Blog
/
Identity
/
February 21, 2023

Account Hijack Prevention: Detect, Respond & Escalate

Learn how to detect, respond, and escalate to prevent further compromise for account hijacks. Get Darktrace's expert insights on cybersecurity strategies.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Lydiane-Ashley Belle
Cyber Security Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
21
Feb 2023

As the prevalence of Software-as-a-Service (SaaS) and multi-factor authentication (MFA) as a primary vector of attack continues across a variety of organizations and of every size in multiple industries, it is more important now than ever for organizations to utilize every tool at their disposal to mitigate account compromise at the earliest possible stage. 

Having incident response is helpful, but when depending on human analysts to react to and appropriately respond to a huge variety of threats there will no doubt be gaps and those gaps can lead to disaster. Having not only an automated response capability, but an intelligent autonomous decision maker which can respond and actively escalate actions as events unfold is paramount to preventing compromise.

In November 2022, Darktrace responded in real time to a threat actor that had gained access to a customer email account and created a new email rule in an attempt to conceal their activity, all while sending their own outbound malicious emails. 

This blog explores how Darktrace uses autonomous response (RESPOND) technology to instantaneously stop the hijacking of a customer SaaS account, without causing any major disruption to their business operations.

Details of Attack Chain

The initial compromise took place when a threat actor logged in from Florida, United States, an unusual location compared to the account holder’s expected login location in the United Arab Emirates. Just over an hour later, a new email rule was created from the same unusual IP address. This rule moved all emails originating from alansari[.]ae, a domain associated with a money transfer service that the account holder had occasionally used, into the “Conversation History” folder and marked them as read. Thereafter, the user began to receive malicious spoof emails purporting to be from alansari[.]ae. This example of social engineering highlights a low effort, high yield method many threat actors employ which relies on the trust of users in known correspondents and services, making it harder to identify and mitigate spoofing in phishing.

Figure 1: Darktrace DETECT showing the unusual login location in Florida, United States, compared to the account holder's expected login location in the United Arab Emirates.

This anomalous activity triggered an Enhanced Monitoring model, whereupon the Darktrace SOC team sent a Proactive Threat Notification (PTN) to the customer, alerting the security team to this attempted account compromise. Darktrace RESPOND automatically forced the user to log out and subsequently disabled the account, while the Darktrace SOC team assessed the incident and liaised with the customer. These two actions performed in tandem added immense value for the security team who were given time to further investigate this incident while preventing further abuse of the compromised account. RESPOND was able to analyze the pattern of behavior and escalate its action in accordance with the specifics of the observed attack instantaneously, which could have taken human teams’ hours of analysis.

Figure 2: Image demonstrating the actions taken by Darktrace RESPOND in response to the suspicious activity detected on the device in question. The first action was a forced log out, which was followed up by the account being disabled. 

The Darktrace SOC team determined that the purpose of this email rule creation was to conceal legitimate incoming emails from the money transfer service, while sending spoofed emails to induce the account holder to send money to the threat actor. 

Three days after the initial compromise, Darktrace observed one such spoofed email claiming to be from alansari[.]ae. However, it was immediately placed in the junk folder by Darktrace RESPOND, again demonstrating the effectiveness and immediacy of autonomous RESPOND actions. Given the account holder had a history of receiving emails from the money transfer service, it is likely that without the instant and autonomous actions of Darktrace RESPOND they may have fallen victim to the attacker’s attempt. 

Conclusion

Ultimately, Darktrace RESPOND demonstrated its automated response capabilities and its autonomous decision allowed it to detect and respond to an account compromise at the initial compromise stage, preventing the attacker from stealing funds from the account holder. 

By enabling autonomous response, the human security team was freed up to provide deeper investigation into the incident and mitigation, while ensuring the threat actor was not able to further exploit the privileges of the account.

Although this compromise focused on funds being embezzled from an individual, this intrusion could have easily escalated to a more widespread breach of client data. Safeguarding customer networks requires rapid response and an intelligent decision maker able to respond to ongoing incidents and escalate actions at the earliest stage. 

The Darktrace suite of products, including RESPOND and its dedicated SOC team and services, provides autonomous and instantaneous protection from attackers before they can leverage compromised accounts to further penetrate a network, or exfiltrate sensitive company data. 

Credit to: Brianna Leddy, Director of Analysis and Lydiane-Ashley Belle, Cyber Security Analyst.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Lydiane-Ashley Belle
Cyber Security Analyst

More in this series

No items found.

Blog

/

Identity

/

July 3, 2025

Top Eight Threats to SaaS Security and How to Combat Them

Default blog imageDefault blog image

The latest on the identity security landscape

Following the mass adoption of remote and hybrid working patterns, more critical data than ever resides in cloud applications – from Salesforce and Google Workspace, to Box, Dropbox, and Microsoft 365.

On average, a single organization uses 130 different Software-as-a-Service (SaaS) applications, and 45% of organizations reported experiencing a cybersecurity incident through a SaaS application in the last year.

As SaaS applications look set to remain an integral part of the digital estate, organizations are being forced to rethink how they protect their users and data in this area.

What is SaaS security?

SaaS security is the protection of cloud applications. It includes securing the apps themselves as well as the user identities that engage with them.

Below are the top eight threats that target SaaS security and user identities.

1.  Account Takeover (ATO)

Attackers gain unauthorized access to a user’s SaaS or cloud account by stealing credentials through phishing, brute-force attacks, or credential stuffing. Once inside, they can exfiltrate data, send malicious emails, or escalate privileges to maintain persistent access.

2. Privilege escalation

Cybercriminals exploit misconfigurations, weak access controls, or vulnerabilities to increase their access privileges within a SaaS or cloud environment. Gaining admin or superuser rights allows attackers to disable security settings, create new accounts, or move laterally across the organization.

3. Lateral movement

Once inside a network or SaaS platform, attackers move between accounts, applications, and cloud workloads to expand their foot- hold. Compromised OAuth tokens, session hijacking, or exploited API connections can enable adversaries to escalate access and exfiltrate sensitive data.

4. Multi-Factor Authentication (MFA) bypass and session hijacking

Threat actors bypass MFA through SIM swapping, push bombing, or exploiting session cookies. By stealing an active authentication session, they can access SaaS environments without needing the original credentials or MFA approval.

5. OAuth token abuse

Attackers exploit OAuth authentication mechanisms by stealing or abusing tokens that grant persistent access to SaaS applications. This allows them to maintain access even if the original user resets their password, making detection and mitigation difficult.

6. Insider threats

Malicious or negligent insiders misuse their legitimate access to SaaS applications or cloud platforms to leak data, alter configurations, or assist external attackers. Over-provisioned accounts and poor access control policies make it easier for insiders to exploit SaaS environments.

7. Application Programming Interface (API)-based attacks

SaaS applications rely on APIs for integration and automation, but attackers exploit insecure endpoints, excessive permissions, and unmonitored API calls to gain unauthorized access. API abuse can lead to data exfiltration, privilege escalation, and service disruption.

8. Business Email Compromise (BEC) via SaaS

Adversaries compromise SaaS-based email platforms (e.g., Microsoft 365 and Google Workspace) to send phishing emails, conduct invoice fraud, or steal sensitive communications. BEC attacks often involve financial fraud or data theft by impersonating executives or suppliers.

BEC heavily uses social engineering techniques, tailoring messages for a specific audience and context. And with the growing use of generative AI by threat actors, BEC is becoming even harder to detect. By adding ingenuity and machine speed, generative AI tools give threat actors the ability to create more personalized, targeted, and convincing attacks at scale.

Protecting against these SaaS threats

Traditionally, security leaders relied on tools that were focused on the attack, reliant on threat intelligence, and confined to a single area of the digital estate.

However, these tools have limitations, and often prove inadequate for contemporary situations, environments, and threats. For example, they may lack advanced threat detection, have limited visibility and scope, and struggle to integrate with other tools and infrastructure, especially cloud platforms.

AI-powered SaaS security stays ahead of the threat landscape

New, more effective approaches involve AI-powered defense solutions that understand the digital business, reveal subtle deviations that indicate cyber-threats, and action autonomous, targeted responses.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

/

July 2, 2025

Pre-CVE Threat Detection: 10 Examples Identifying Malicious Activity Prior to Public Disclosure of a Vulnerability

Default blog imageDefault blog image

Vulnerabilities are weaknesses in a system that can be exploited by malicious actors to gain unauthorized access or to disrupt normal operations. Common Vulnerabilities and Exposures (or CVEs) are a list of publicly disclosed cybersecurity vulnerabilities that can be tracked and mitigated by the security community.

When a vulnerability is discovered, the standard practice is to report it to the vendor or the responsible organization, allowing them to develop and distribute a patch or fix before the details are made public. This is known as responsible disclosure.

With a record-breaking 40,000 CVEs reported for 2024 and a predicted higher number for 2025 by the Forum for Incident Response and Security Teams (FIRST) [1], anomaly-detection is essential for identifying these potential risks. The gap between exploitation of a zero-day and disclosure of the vulnerability can sometimes be considerable, and retroactively attempting to identify successful exploitation on your network can be challenging, particularly if taking a signature-based approach.

Detecting threats without relying on CVE disclosure

Abnormal behaviors in networks or systems, such as unusual login patterns or data transfers, can indicate attempted cyber-attacks, insider threats, or compromised systems. Since Darktrace does not rely on rules or signatures, it can detect malicious activity that is anomalous even without full context of the specific device or asset in question.

For example, during the Fortinet exploitation late last year, the Darktrace Threat Research team were investigating a different Fortinet vulnerability, namely CVE 2024-23113, for exploitation when Mandiant released a security advisory around CVE 2024-47575, which aligned closely with Darktrace’s findings.

Retrospective analysis like this is used by Darktrace’s threat researchers to better understand detections across the threat landscape and to add additional context.

Below are ten examples from the past year where Darktrace detected malicious activity days or even weeks before a vulnerability was publicly disclosed.

ten examples from the past year where Darktrace detected malicious activity days or even weeks before a vulnerability was publicly disclosed.

Trends in pre-cve exploitation

Often, the disclosure of an exploited vulnerability can be off the back of an incident response investigation related to a compromise by an advanced threat actor using a zero-day. Once the vulnerability is registered and publicly disclosed as having been exploited, it can kick off a race between the attacker and defender: attack vs patch.

Nation-state actors, highly skilled with significant resources, are known to use a range of capabilities to achieve their target, including zero-day use. Often, pre-CVE activity is “low and slow”, last for months with high operational security. After CVE disclosure, the barriers to entry lower, allowing less skilled and less resourced attackers, like some ransomware gangs, to exploit the vulnerability and cause harm. This is why two distinct types of activity are often seen: pre and post disclosure of an exploited vulnerability.

Darktrace saw this consistent story line play out during several of the Fortinet and PAN OS threat actor campaigns highlighted above last year, where nation-state actors were seen exploiting vulnerabilities first, followed by ransomware gangs impacting organizations [2].

The same applies with the recent SAP Netweaver exploitations being tied to a China based threat actor earlier this spring with subsequent ransomware incidents being observed [3].

Autonomous Response

Anomaly-based detection offers the benefit of identifying malicious activity even before a CVE is disclosed; however, security teams still need to quickly contain and isolate the activity.

For example, during the Ivanti chaining exploitation in the early part of 2025, a customer had Darktrace’s Autonomous Response capability enabled on their network. As a result, Darktrace was able to contain the compromise and shut down any ongoing suspicious connectivity by blocking internal connections and enforcing a “pattern of life” on the affected device.

This pre-CVE detection and response by Darktrace occurred 11 days before any public disclosure, demonstrating the value of an anomaly-based approach.

In some cases, customers have even reported that Darktrace stopped malicious exploitation of devices several days before a public disclosure of a vulnerability.

For example, During the ConnectWise exploitation, a customer informed the team that Darktrace had detected malicious software being installed via remote access. Upon further investigation, four servers were found to be impacted, while Autonomous Response had blocked outbound connections and enforced patterns of life on impacted devices.

Conclusion

By continuously analyzing behavioral patterns, systems can spot unusual activities and patterns from users, systems, and networks to detect anomalies that could signify a security breach.

Through ongoing monitoring and learning from these behaviors, anomaly-based security systems can detect threats that traditional signature-based solutions might miss, while also providing detailed insights into threat tactics, techniques, and procedures (TTPs). This type of behavioral intelligence supports pre-CVE detection, allows for a more adaptive security posture, and enables systems to evolve with the ever-changing threat landscape.

Credit to Nathaniel Jones (VP, Security & AI Strategy, Field CISO), Emma Fougler (Global Threat Research Operations Lead), Ryan Traill (Analyst Content Lead)

References and further reading:

  1. https://www.first.org/blog/20250607-Vulnerability-Forecast-for-2025
  2. https://cloud.google.com/blog/topics/threat-intelligence/fortimanager-zero-day-exploitation-cve-2024-47575
  3. https://thehackernews.com/2025/05/china-linked-hackers-exploit-sap-and.html

Related Darktrace blogs:

*Self-reported by customer, confirmed afterwards.

**Updated January 2024 blog now reflects current findings

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI