Blog
/
/
April 22, 2021

Darktrace Identifies APT35 in Pre-Infected State

Learn how Darktrace identified APT35 (Charming Kitten) in a pre-infected environment. Gain insights into the detection and mitigation of this threat.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
22
Apr 2021

What is APT35?

APT35, sometimes referred to as Charming Kitten, Imperial Kitten, or Tortoiseshell, is a notorious cyber-espionage group which has been active for nearly 10 years. Famous for stealing scripts from HBO’s Game of Thrones in 2017 and suspected of interfering in the U.S. presidential election last year, it has launched extensive campaigns against organizations and officials across North America and the Middle East. Public attribution has associated APT35 with an Iran-based nation state threat actor.

Darktrace regularly detects attacks by many known threat actors including Evil Corp and APT41, alongside large amounts of malicious but uncategorized activity from sophisticated attack groups. As Cyber AI doesn’t rely on pre-defined rules, signatures, or threat intelligence to detect cyber-attacks, it often detects new and previously unknown threats.

This blog post examines a real-world instance of APT35 activity in an organization in the EMEA region. Darktrace observed this activity last June, but due to ongoing investigations, details are only now being released with the wider community. It represents an interesting case for the value of self-learning AI in two key ways:

  • Identifying ‘low and slow’ attacks: How do you spot an attacker that is lying low and conducts very little detectable activity?
  • Detecting pre-existing infections without signatures: What if a threat actor is already inside the system when Cyber AI is activated?

Advanced Persistent Threats (APTs) lying low

APT35 had already infected a single corporate device, likely via a spear phishing email, when Cyber AI was deployed in the company’s digital estate for the first time.

The infected device exhibited no other signs of malicious activity beyond continued command and control (C2) beaconing, awaiting instructions from the attackers for several days. This is what we call ‘lying low’ – where the hacker stays present within a system, but remains under the radar, avoiding detection either intentionally, or because they’re focusing on another victim while being content with backdoor access into the organization.

Either way, this is a nightmare scenario for a security team and any security vendor: an APT which has established a foothold and is lying in wait to continue their attack – undetected.

Finding the infected device

When Darktrace’s AI was first activated, it spent five business days learning the unique ‘patterns of life’ for the organization. After this initial, short learning period, Darktrace immediately flagged the infected device and the C2 activity.

Although the breach device had been beaconing since before Darktrace was implemented, Cyber AI automatically clusters devices into ‘peer groups’ based on similar behavioral patterns, enabling Darktrace to identify the continued C2 traffic coming from the device as highly unusual in comparison to the wider, automatically identified peer group. None of its behaviorally close neighbors were doing anything remotely similar, and Darktrace was therefore able to determine that the activity was malicious, and that it represented C2 beaconing.

Darktrace detected the APT35 C2 activity without the use of any signatures or threat intelligence on multiple levels. Responding to the alerts, the internal security team quickly isolated the device and verified with the Darktrace system that no further reconnaissance, lateral movement, or data exfiltration had taken place.

APT35 ‘Charming Kitten’ analysis

Once the C2 was detected, Cyber AI Analyst immediately began analyzing the infected device. The Cyber AI Analyst only highlights the most severe incidents in any given environment and automates many of the typical level one and level two SOC tasks. This includes reviewing all alerts, investigating the scope and nature of each event, and reducing time to triage by 92%.

Figure 1: Similar Cyber AI Analyst report observing C2 communications

Numerous factors made the C2 activity stand out strongly to Darktrace. Combining all those small anomalies, Darktrace was able to autonomously prioritize this behavior and classify it as the most significant security incident in the week.

Figure 2: Example list of C2 detections for an APT35 attack

Some of the command and control destinations were known to threat intelligence and open-source intelligence (OSINT) – for instance, the domain cortanaservice[.]com is a known C2 domain for APT35.

However, the presence of a known malicious domain does not guarantee detection. In fact, the organization had a very mature security stack, yet they failed to discover the existing APT35 infection until Darktrace was activated in their environment.

Assessing the impact of the intrusion

Once an intrusion has been identified, it is important to understand the extent of it – such as whether lateral movement is occurring and what connectivity the infected device has in general. Asset management is never perfect, so it can be very hard for organizations to determine what damage a compromised device is capable of inflicting.

Darktrace presents this information in real time, and from a bird’s-eye perspective, making the assessment very simple. It immediately highlights which subnet the device is located in and any further context.

Figure 3: Darktrace’s Threat Visualizer displaying the connectivity of a device

Based on this information, the organization confirmed that it was a corporate device that had been infected by APT35. As Darktrace shows any credentials associated with the device, a quick assessment could be made of potentially compromised accounts.

Figure 4: Similar and associated credentials of a device

Luckily, only a single local user account was associated with the device.

The exact level of privileges and connectivity which the infected device had, as well as the extent to which the intrusion might have spread from the initially infected device, was still uncertain. By looking at the device’s event log, this became rapidly clear within minutes.

Filtering first for internal connections only (excluding any connections going to the Internet) gave a good idea of the level of connectivity of the device. A cursory glance showed that the device did indeed have some level of internal connectivity. It made DNS requests to the internal domain controller and was making successful NetBIOS connections over ports 135 and 139 internally.

By filtering further in the event log, it quickly became clear that in this time the device had not used any administrative channels, such as RDP, SSH, Telnet, or SMB. This is a strong indicator that no lateral movement over common channels had taken place.

It is more difficult to assess whether the device was performing any other suspicious activity, like stealthy reconnaissance or staging data from other internal devices. Darktrace provided another capability to assess this quickly – filtering the device’s network connections to show only unusual or new connections.

Figure 5: Event device log filtered to show unusual connections only

Darktrace assesses each individual connection for every entity observed in context, using its unsupervised machine learning to evaluate how unusual a given connection is. This could be a single new failed internal connection attempt, indicating stealthy reconnaissance, or a connection over SMB at an unusual time to a new internal destination, implying lateral movement or data staging.

By filtering for only unusual or new connections, Darktrace’s AI produces further leads that can be pursued extremely quickly, thanks to the context and added visibility.

No further suspicious internal connections were observed, strengthening the hypothesis that APT35 was lying low at that time.

Unprecedented but not unpreventable

Darktrace’s 24/7 monitoring service, Proactive Threat Notifications, would have alerted on and escalated the incident. Darktrace RESPOND would have responded autonomously and enforced normal activity for the device, preventing the C2 traffic without interrupting regular business workflows.

It is impossible to predefine where the next attack will come from. APT35 is just one of the many sophisticated threat actors on the scene, and with such a diverse and volatile threat landscape, unsupervised machine learning is crucial in spotting and defending against anomalies, no matter what form they take.

This case study helps illustrate how Darktrace detects pre-existing infections and ‘low and slow’ attacks, and further shows how Darktrace can be used to quickly understand the scope and extent of an intrusion.

Learn how Cyber AI Analyst detected APT41 two weeks before public attribution

Shortened list of C2 detections over four days on the infected device:

  • Compromise / Sustained TCP Beaconing Activity To Rare Endpoint
  • Compromise / Beaconing Meta Model
  • Compromise / Beaconing Activity To External Rare
  • Compromise / SSL Beaconing To Rare Destination
  • Compromise / Slow Beaconing To External Rare
  • Compromise / High Volume of Connections with Beacon Score
  • Compromise / Unusual Connections to Rare Lets Encrypt
  • Compromise / Beacon for 4 Days
  • Compromise / Agent Beacon

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO

More in this series

No items found.

Blog

/

Proactive Security

/

October 23, 2025

Patch Smarter, Not Harder: Now Empowering Security Teams with Business-Aligned Threat Context Agents

Default blog imageDefault blog image

Most risk management programs remain anchored in enumeration: scanning every asset, cataloging every CVE, and drowning in lists that rarely translate into action. Despite expensive scanners, annual pen tests, and countless spreadsheets, prioritization still falters at two critical points.

Context gaps at the device level: It’s hard to know which vulnerabilities actually matter to your business given existing privileges, what software it runs, and what controls already reduce risk.

Business translation: Even when the technical priority is clear, justifying effort and spend in financial terms—especially across many affected devices—can delay action. Especially if it means halting other areas of the business that directly generate revenue.

The result is familiar: alert fatigue, “too many highs,” and remediation that trails behind the threat landscape. Darktrace / Proactive Exposure Management addresses this by pairing precise, endpoint‑level context with clear, financial insight so teams can prioritize confidently and mobilize faster.

A powerful combination: No-Telemetry Endpoint Agent + Cost-Benefit Analysis

Darktrace / Proactive Exposure Management now uniquely combines technical precision with business clarity in a single workflow.  With this release, Darktrace / Proactive Exposure Management delivers a more holistic approach, uniting technical context and financial insight to drive proactive risk reduction. The result is a single solution that helps security teams stay ahead of threats while reducing noise, delays, and complexity.

  • No-Telemetry Endpoint: Collects installed software data and maps it to known CVEs—without network traffic—providing device-level vulnerability context and operational relevance.
  • Cost-Benefit Analysis for Patching: Calculates ROI by comparing patching effort with potential exploit impact, factoring in headcount time, device count, patch difficulty, and automation availability.

Introducing the No-Telemetry Endpoint Agent

Darktrace’s new endpoint agent inventories installed software on devices and maps it to known CVEs without collecting network data so you can prioritize using real device context and available security controls.

By grounding vulnerability findings in the reality of each endpoint, including its software footprint and existing controls, teams can cut through generic severity scores and focus on what matters most. The agent is ideal for remote devices, BYOD-adjacent fleets, or environments standardizing on Darktrace, and is available without additional licensing cost.

Darktrace / Proactive Exposure Management user interface
Figure 1: Darktrace / Proactive Exposure Management user interface

Built-In Cost-Benefit Analysis for Patching

Security teams often know what needs fixing but stakeholders need to understand why now. Darktrace’s new cost-benefit calculator compares the total cost to patch against the potential cost of exploit, producing an ROI for the patch action that expresses security action in clear financial terms.

Inputs like engineer time, number of affected devices, patch difficulty, and automation availability are factored in automatically. The result is a business-aligned justification for every patching decision—helping teams secure buy-in, accelerate approvals, and move work forward with one-click ticketing, CSV export, or risk acceptance.

Darktrace / Proactive Exposure Management Cost Benefit Analysis
Figure 2: Darktrace / Proactive Exposure Management Cost Benefit Analysis

A Smarter, Faster Approach to Exposure Management

Together, the no-telemetry endpoint and Cost–Benefit Analysis advance the CTEM motion from theory to practice. You gain higher‑fidelity discovery and validation signals at the device level, paired with business‑ready justification that accelerates mobilization. The result is fewer distractions, clearer priorities, and faster measurable risk reduction. This is not from chasing every alert, but by focusing on what moves the needle now.

  • Smarter Prioritization: Device‑level context trims noise and spotlights the exposures that matter for your business.
  • Faster Decisions: Built‑in ROI turns technical urgency into executive clarity—speeding approvals and action.
  • Practical Execution: Privacy‑conscious endpoint collection and ticketing/export options fit neatly into existing workflows.
  • Better Outcomes: Close the loop faster—discover, prioritize, validate, and mobilize—on the same operating surface.

Committed to innovation

These updates are part of the broader Darktrace release, which also included:

1. Major innovations in cloud security with the launch of the industry’s first fully automated cloud forensics solution, reinforcing Darktrace’s leadership in AI-native security.

2. Darktrace Network Endpoint eXtended Telemetry (NEXT) is revolutionizing NDR with the industry’s first mixed-telemetry agent using Self-Learning AI.

3. Improvements to our OT product, purpose built for industrial infrastructure, Darktrace / OT now brings dedicated OT dashboard, segmentation-aware risk modeling, and expanded visibility into edge assets and automation protocols.

Join our Live Launch Event

When? 

December 9, 2025

What will be covered?

Join our live broadcast to experience how Darktrace is eliminating blind spots for detection and response across your complete enterprise with new innovations in Agentic AI across our ActiveAI Security platform. Industry leaders from IDC will join Darktrace customers to discuss challenges in cross-domain security, with a live walkthrough reshaping the future of Network Detection & Response, Endpoint Detection & Response, Email Security, and SecOps in novel threat detection and autonomous investigations.

Continue reading
About the author

Blog

/

Proactive Security

/

October 23, 2025

Darktrace Announces Extended Visibility Between Confirmed Assets and Leaked Credentials from the Deep and Dark Web

Default blog imageDefault blog image

Why exposure management needs to evolve beyond scans and checklists

The modern attack surface changes faster than most security programs can keep up. New assets appear, environments change, and adversaries are increasingly aided by automation and AI. Traditional approaches like periodic scans, static inventories, or annual pen tests are no longer enough. Without a formal exposure program, many businesses are flying blind, unaware of where the next threat may emerge.

This is where Continuous Threat Exposure Management (CTEM) becomes essential. Introduced by Gartner, CTEM helps organizations continuously assess, validate, and improve their exposure to real-world threats. It reframes the problem: scope your true attack surface, prioritize based on business impact and exploitability, and validate what attackers can actually do today, not once a year.

With two powerful new capabilities, Darktrace / Attack Surface Management helps organizations evolve their CTEM programs to meet the demands of today’s threat landscape. These updates make CTEM a reality, not just a strategy.

Too much data, not enough direction

Modern Attack Surface Management tools excel at discovering assets such as cloud workloads, exposed APIs, and forgotten domains. But they often fall short when it comes to prioritization. They rely on static severity scores or generic CVSS ratings, which do not reflect real-world risk or business impact.

This leaves security teams with:

  • Alert fatigue from hundreds of “critical” findings
  • Patch paralysis due to unclear prioritization
  • Blind spots around attacker intent and external targeting

CISOs need more than visibility. They need confidence in what to fix first and context to justify those decisions to stakeholders.

Evolving Attack Surface Management

Attack Surface Management (ASM) must evolve from static lists and generic severity scores to actionable intelligence that helps teams make the right decision now.

Joining the recent addition of Exploit Prediction Assessment, which debuted in late June 2025, today we’re introducing two capabilities that push ASM into that next era:

  • Exploit Prediction Assessment: Continuously validates whether top-priority exposures are actually exploitable in your environment without waiting for patch cycles or formal pen tests.  
  • Deep & Dark Web Monitoring: Extends visibility across millions of sources in the deep and dark web to detect leaked credentials linked to your confirmed domains.
  • Confidence Score: our newly developed AI classification platform will compare newly discovered assets to assets that are known to belong to your organization. The more these newly discovered assets look similar to assets that belong to your organization, the higher the score will be.

Together, these features compress the window from discovery to decision, so your team can act with precision, not panic. The result is a single solution that helps teams stay ahead of attackers without introducing new complexities.

Exploit Prediction Assessment

Traditional penetration tests are invaluable, but they’re often a snapshot of that point-in-time, are potentially disruptive, and compliance frameworks still expect them. Not to mention, when vulnerabilities are present, teams can act immediately rather than relying solely on information from CVSS scores or waiting for patch cycles.  

Unlike full pen tests which can be obtrusive and are usually done only a couple times per year, Exploit Prediction Assessment is surgical, continuous, and focused only on top issues Instead of waiting for vendor patches or the next pen‑test window. It helps confirm whether a top‑priority exposure is actually exploitable in your environment right now.  

For more information on this visit our blog: Beyond Discovery: Adding Intelligent Vulnerability Validation to Darktrace / Attack Surface Management

Deep and Dark Web Monitoring: Extending the scope

Customers have been asking for this for years, and it is finally here. Defense against the dark web. Darktrace / Attack Surface Management’s reach now spans millions of sources across the deep and dark web including forums, marketplaces, breach repositories, paste sites, and other hard‑to‑reach communities to detect leaked credentials linked to your confirmed domains.  

Monitoring is continuous, so you’re alerted as soon as evidence of compromise appears. The surface web is only a fraction of the internet, and a sizable share of risk hides beyond it. Estimates suggest the surface web represents roughly ~10% of all online content, with the rest gated or unindexed—and the TOR-accessible dark web hosts a high proportion of illicit material (a King’s College London study found ~57% of surveyed onion sites contained illicit content), underscoring why credential leakage and brand abuse often appear in places traditional monitoring doesn’t reach. Making these spaces high‑value for early warning signals when credentials or brand assets appear. Most notably, this includes your company’s reputation, assets like servers and systems, and top executives and employees at risk.

What changes for your team

Before:

  • Hundreds of findings, unclear what to start with
  • Reactive investigations triggered by incidents

After:

  • A prioritized backlog based on confidence score or exploit prediction assessment verification
  • Proactive verification of exposure with real-world risk without manual efforts

Confidence Score: Prioritize based on the use-case you care most about

What is it?

Confidence Score is a metric that expresses similarity of newly discover assets compared to the confirmed asset inventory. Several self-learning algorithms compare features of assets to be able to calculate a score.

Why it matters

Traditional Attack Surface Management tools treat all new discovery equally, making it unclear to your team how to identify the most important newly discovered assets, potentially causing you to miss a spoofing domain or shadow IT that could impact your business.

How it helps your team

We’re dividing newly discovered assets into separate insight buckets that each cover a slightly different business case.

  • Low scoring assets: to cover phishing & spoofing domains (like domain variants) that are just being registered and don't have content yet.
  • Medium scoring assets: have more similarities to your digital estate, but have better matching to HTML, brand names, keywords. Can still be phishing but probably with content.
  • High scoring assets: These look most like the rest of your confirmed digital estate, either it's phishing that needs the highest attention, or the asset belongs to your attack surface and requires asset state confirmation to enable the platform to monitor it for risks.

Smarter Exposure Management for CTEM Programs

Recent updates to Darktrace / Attack Surface Management directly advance the core phases of Continuous Threat Exposure Management (CTEM): scope, discover, prioritize, validate, and mobilize. The new Exploit Prediction Assessment helps teams validate and prioritize vulnerabilities based on real-world exploitability, while Deep & Dark Web Monitoring extends discovery into hard-to-reach areas where stolen data and credentials often surface. Together, these capabilities reduce noise, accelerate remediation, and help organizations maintain continuous visibility over their expanding attack surface.

Building on these innovations, Darktrace / Attack Surface Management empowers security teams to focus on what truly matters. By validating exploitability, it cuts through the noise of endless vulnerability lists—helping defenders concentrate on exposures that represent genuine business risk. Continuous monitoring for leaked credentials across the deep and dark web further extends visibility beyond traditional asset discovery, closing critical blind spots where attackers often operate. Crucially, these capabilities complement, not replace, existing security controls such as annual penetration tests, providing continuous, low-friction validation between formal assessments. The result is a more adaptive, resilient security posture that keeps pace with an ever-evolving threat landscape.

If you’re building or maturing a CTEM program—and want fewer open exposures, faster remediation, and better outcomes, Darktrace / Attack Surface Management’s new Exploit Prediction Assessment and Deep & Dark Web Monitoring are ready to help.

  • Want a more in-depth look at how Exploit Prediction Assessment functions? Read more here

Committed to innovation

These updates are part of the broader Darktrace release, which also included:

1. Major innovations in cloud security with the launch of the industry’s first fully automated cloud forensics solution, reinforcing Darktrace’s leadership in AI-native security.

2. Darktrace Network Endpoint eXtended Telemetry (NEXT) is revolutionizing NDR with the industry’s first mixed-telemetry agent using Self-Learning AI.

3. Improvements to our OT product, purpose built for industrial infrastructure, Darktrace / OT now brings dedicated OT dashboard, segmentation-aware risk modeling, and expanded visibility into edge assets and automation protocols.

Join our Live Launch Event

When? 

December 9, 2025

What will be covered?

Join our live broadcast to experience how Darktrace is eliminating blind spots for detection and response across your complete enterprise with new innovations in Agentic AI across our ActiveAI Security platform. Industry leaders from IDC will join Darktrace customers to discuss challenges in cross-domain security, with a live walkthrough reshaping the future of Network Detection & Response, Endpoint Detection & Response, Email Security, and SecOps in novel threat detection and autonomous investigations.

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI