Blog
/
Identity
/
June 9, 2021

Multi-Account Hijack Detection with AI

Discover the analysis of a sophisticated SaaS-based attack using Microsoft 365 accounts. Learn how attackers launch & maintain their offensive strategies.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
09
Jun 2021

The widespread and rapid adoption of Software-as-a-Service (SaaS) has opened up a breadth of security risks for IT teams. Unlike commercial off-the-shelf (COTS) software, SaaS security tends to be managed by third-party vendors rather than the end customer. Security teams therefore struggle with reduced visibility and control over these environments, and cyber-criminals have been quick to take advantage, launching a wave of cloud-based attacks, from Vendor Email Compromise to internal account hijacks.

Attackers often gain access to multiple accounts on the same domain, enabling them to attack from multiple angles, for example sending of hundreds of emails from one account, while maintaining persistence with another. This gives the hacker an opportunity to try multiple attack vectors, using tools native to the SaaS environment as well as external payloads.

While preventative controls such as Multi-Factor Authentication (MFA) provide an extra layer of protection, there are many techniques available to circumvent zero-trust approaches. Remote and flexible working is set to continue to varying degrees across many different regions and industries, so companies must now commit to securing their cloud architecture and developing proactive cyber security measures.

In this blog, we will analyze a persistent cyber-attack which targeted a real estate company in Europe and leveraged several compromised Microsoft 365 accounts. These SaaS takeovers are quickly becoming the new norm, but they are still misunderstood and poorly documented in the wider industry. Cyber AI detected every stage of this intrusion in real time, without the use of signatures or static rules.

A and B: Hijacking Microsoft 365 accounts

The organization had around 5,000 devices in its environment, with 1,000 active SaaS accounts. The timeline below shows how the threat actor leveraged the SaaS accounts of five different users to carry out the operation, as well as exploiting several other accounts on the final day.

Figure 1: Diagram of the infection chain, which occurred over three days. On the fourth day, the attacker tried again but was unsuccessful.

The actor initially compromised at least two SaaS credentials – which we’ll refer to here simply as ‘account A’ and ‘account B’ – and logged in from several unusual geographical locations, presumably using a VPN. Darktrace detected this as unusual login events for the SaaS accounts.

In account A, the attacker was observed previewing files likely to contain customer information, but did not perform any other follow-up activity. In account B, they set a new inbox rule three hours after the initial compromise, resulting in a high-severity alert.

At around this time, the threat actor sent a number of phishing emails from account B: emails that appeared to be sharing a harmless and legitimate-looking folder on OneDrive. The link probably led to a fake Microsoft login page, similar to the below, which could have recorded the victims’ credentials and sent them directly back to the attacker.

Figure 2: A seemingly legitimate Microsoft login page.

The phishing attempt was detected by Antigena Email, Darktrace’s email security technology. Antigena was in passive mode at the time, and so was not configured to take action on these threatening emails. But taking into account the highly anomalous sender surge coupled with the unusual login locations, it would have autonomously intercepted all the emails, reducing the impact of the attack.

The attacker was subsequently locked out of account B. After this, they tried (and failed) to use a legacy user agent to bypass any MFA which may have been enforced on the account. Darktrace detected this as a suspicious login and blocked the attempt.

Accounts C, D and E: The threat develops

The next day, the actor logged into a new account (account C) from the same autonomous system number (ASN), indicating that the account had been infected by the OneDrive phishing emails. In other words, the attacker had leveraged account B to compromise new users in the organization and ensure multiple points of intrusion.

Darktrace detected each stage of this, piecing together the different events into one meaningful security narrative.

Figure 3: Anomalous activity from accounts C, D, and E.

Account C was then used to preview a file likely containing contact information.

After being locked out of account C when trying to log in the next day, the hacker worked their way through two more accounts (account D and account E), which they had hijacked in the previous phishing attempts. They were locked out each time after generating alerts due to the unusual logins and new inbox rules created around the same time.

A to Z: End of the line

Running out of options, the attacker decided to go back to account A and set a new inbox rule, using it to send new phishing emails with a link to a non-Microsoft cloud storage domain (Tresorit). Again, Darktrace recognized this as highly unusual behavior, and the hacker was promptly locked out of the account.

During this burst of activity, Darktrace also observed a Microsoft Teams session from one of the suspicious ASNs. This was likely a social engineering attempt and another possible attack vector. Microsoft Teams could have been leveraged to share a malicious link over instant message, extract sensitive information, or send spam internally and externally on the chat function.

The threat actor could have then used this to pivot across various applications and accounts, assuming that the company had a siloed security approach – with different tools for cloud, SaaS, email, and endpoint – and so could not pick up on the malicious cross-platform movement.

On the following day, the attacker attempted logins on multiple accounts again, but with no success. Cyber AI had pinpointed all the anomalous activity – no matter where it originated – and alerted the security team immediately.

SaaS attack under the microscope

Multi-account compromises can be incredibly persistent and are difficult for traditional security tools to identify. The hacker used several tactics to circumvent the customer’s existing email security products:

  1. The initial use of two compromised credentials – account A and account B – allowed the hacker to stay under the radar and not raise too much suspicion on a single account. Account A was kept quiet until other avenues had been exhausted.
  2. Activity was generated from multiple ASNs in at least three different geographical locations, probably utilizing a VPN: one in Africa where much of the activity originated, and two in North America, including some widely used ASNs which were highly unusual for the customer.
  3. The attacker entirely used Microsoft services until the final emails, choosing to ‘live off the land’ rather than sending links that may have been caught by gateways.
  4. The attacker logged into Microsoft Teams in their final movements – a fairly benign-looking event which could have been used to compromise more accounts and move laterally, and would have gone undetected.

Darktrace identified every stage of the attack – including spotting the anomalous ASNs – and launched an automatic, in-depth investigation with Cyber AI Analyst. The organization was thus able to take action before the damage was done.

Figure 4: Darktrace’s SaaS console gives a clear overview of activity across all different applications.

ABCs of SaaS security

The approach of using various accounts to mount the offensive, while keeping one to maintain persistence, prolonged this intrusion. Such tactics will likely be seen again in the near future.

Tracking the number of factors involved in an attack with multiple credentials, multiple attack vectors, and multiple attacker-IPs, is a serious challenge. In these situations, it is essential to have a security solution which can detect activity across different applications, forming a unified and holistic understanding over the entire digital enterprise.

While not active in this case, Antigena SaaS would have taken autonomous action and prevented the threat from escalating by enforcing normal behavior, stopping the hacker from logging in from malicious infrastructure or performing any out-of-character SaaS actions, such as creating new inbox rules.

Following the intrusion, the company decided to adopt Antigena SaaS, which now mitigates their cloud security risks and guards against sensitive data loss and reputational damage.

Thanks to Darktrace analyst Daniel Gentle for his insights on the above threat find.

Darktrace model detections:

  • SaaS / Compromise / Unusual Login and New Email Rule
  • SaaS / Compliance / New Email Rule
  • SaaS / Unusual Activity / Unusual External Source for SaaS Credential Use
  • SaaS / Access / Suspicious Login Attempt
  • Antigena Email: Unusual Login Location + Sender Surge
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO

More in this series

No items found.

Blog

/

/

November 19, 2025

Securing Generative AI: Managing Risk in Amazon Bedrock with Darktrace / CLOUD

securing generative aiDefault blog imageDefault blog image

Security risks and challenges of generative AI in the enterprise

Generative AI and managed foundation model platforms like Amazon Bedrock are transforming how organizations build and deploy intelligent applications. From chatbots to summarization tools, Bedrock enables rapid agent development by connecting foundation models to enterprise data and services. But with this flexibility comes a new set of security challenges, especially around visibility, access control, and unintended data exposure.

As organizations move quickly to operationalize generative AI, traditional security controls are struggling to keep up. Bedrock’s multi-layered architecture, spanning agents, models, guardrails, and underlying AWS services, creates new blind spots that standard posture management tools weren’t designed to handle. Visibility gaps make it difficult to know which datasets agents can access, or how model outputs might expose sensitive information. Meanwhile, developers often move faster than security teams can review IAM permissions or validate guardrails, leading to misconfigurations that expand risk. In shared-responsibility environments like AWS, this complexity can blur the lines of ownership, making it critical for security teams to have continuous, automated insight into how AI systems interact with enterprise data.

Darktrace / CLOUD provides comprehensive visibility and posture management for Bedrock environments, automatically detecting and proactively scanning agents and knowledge bases, helping teams secure their AI infrastructure without slowing down expansion and innovation.

A real-world scenario: When access goes too far

Consider a scenario where an organization deploys a Bedrock agent to help internal staff quickly answer business questions using company knowledge. The agent was connected to a knowledge base pointing at documents stored in Amazon S3 and given access to internal services via APIs.

To get the system running quickly, developers assigned the agent a broad execution role. This role granted access to multiple S3 buckets, including one containing sensitive customer records. The over-permissioning wasn’t malicious; it stemmed from the complexity of IAM policy creation and the difficulty of identifying which buckets held sensitive data.

The team assumed the agent would only use the intended documents. However, they did not fully consider how employees might interact with the agent or how it might act on the data it processed.  

When an employee asked a routine question about quarterly customer activity, the agent surfaced insights that included regulated data, revealing it to someone without the appropriate access.

This wasn’t a case of prompt injection or model manipulation. The agent simply followed instructions and used the resources it was allowed to access. The exposure was valid under IAM policy, but entirely unintended.

How Darktrace / CLOUD prevents these risks

Darktrace / CLOUD helps organizations avoid scenarios like unintended data exposure by providing layered visibility and intelligent analysis across Bedrock and SageMaker environments. Here’s how each capability works in practice:

Configuration-level visibility

Bedrock deployments often involve multiple components: agents, guardrails, and foundation models, each with its own configuration. Darktrace / CLOUD indexes these configurations so teams can:

  1. Inspect deployed agents and confirm they are connected only to approved data sources.
  2. Track evaluation job setups and their links to Amazon S3 datasets, uncovering hidden data flows that could expose sensitive information.
  3. Maintain full awareness of all AI components, reducing the chance of overlooked assets introducing risk.

By unifying configuration data across Bedrock, SageMaker, and other AWS services, Darktrace / CLOUD provides a single source of truth for AI asset visibility. Teams can instantly see how each component is configured and whether it aligns with corporate security policies. This eliminates guesswork, accelerates audits, and helps prevent misaligned settings from creating data exposure risks.

 Agents for bedrock relationship views.
Figure 1: Agents for bedrock relationship views

Architectural awareness

Complex AI environments can make it difficult to understand how components interact. Darktrace / CLOUD generates real-time architectural diagrams that:

  1. Visualize relationships between agents, models, and datasets.
  1. Highlight unintended data access paths or risk propagation across interconnected services.

This clarity helps security teams spot vulnerabilities before they lead to exposure. By surfacing these relationships dynamically, Darktrace / CLOUD enables proactive risk management, helping teams identify architectural drift, redundant data connections, or unmonitored agents before attackers or accidental misuse can exploit them. This reduces investigation time and strengthens compliance confidence across AI workloads.

Figure 2: Full Bedrock agent architecture including lambda and IAM permission mapping
Figure 2: Full Bedrock agent architecture including lambda and IAM permission mapping

Access & privilege analysis

IAM permissions apply to every AWS service, including Bedrock. When Bedrock agents assume IAM roles that were broadly defined for other workloads, they often inherit excessive privileges. Without strict least-privilege controls, the agent may have access to far more data and services than required, creating avoidable security exposure. Darktrace / CLOUD:

  1. Reviews execution roles and user permissions to identify excessive privileges.
  2. Flags anomalies that could enable privilege escalation or unauthorized API actions.

This ensures agents operate within the principle of least privilege, reducing attack surface. Beyond flagging risky roles, Darktrace / CLOUD continuously learns normal patterns of access to identify when permissions are abused or expanded in real time. Security teams gain context into why an action is anomalous and how it could affect connected assets, allowing them to take targeted remediation steps that preserve productivity while minimizing exposure.

Misconfiguration detection

Misconfigurations are a leading cause of cloud security incidents. Darktrace / CLOUD automatically detects:

  1. Publicly accessible S3 buckets that may contain sensitive training data.
  2. Missing guardrails in Bedrock deployments, which can allow inappropriate or sensitive outputs.
  3. Other issues such as lack of encryption, direct internet access, and root access to models.  

By surfacing these risks early, teams can remediate before they become exploitable. Darktrace / CLOUD turns what would otherwise be manual reviews into automated, continuous checks, reducing time to discovery and preventing small oversights from escalating into full-scale incidents. This automated assurance allows organizations to innovate confidently while keeping their AI systems compliant and secure by design.

Configuration data for Anthropic foundation model
Figure 3: Configuration data for Anthropic foundation model

Behavioral anomaly detection

Even with correct configurations, behavior can signal emerging threats. Using AWS CloudTrail, Darktrace / CLOUD:

  1. Monitors for unusual data access patterns, such as agents querying unexpected datasets.
  2. Detects anomalous training job invocations that could indicate attempts to pollute models.

This real-time behavioral insight helps organizations respond quickly to suspicious activity. Because it learns the “normal” behavior of each Bedrock component over time, Darktrace / CLOUD can detect subtle shifts that indicate emerging risks, before formal indicators of compromise appear. The result is faster detection, reduced investigation effort, and continuous assurance that AI-driven workloads behave as intended.

Conclusion

Generative AI introduces transformative capabilities but also complex risks that evolve alongside innovation. The flexibility of services like Amazon Bedrock enables new efficiencies and insights, yet even legitimate use can inadvertently expose sensitive data or bypass security controls. As organizations embrace AI at scale, the ability to monitor and secure these environments holistically, without slowing development, is becoming essential.

By combining deep configuration visibility, architectural insight, privilege and behavior analysis, and real-time threat detection, Darktrace gives security teams continuous assurance across AI tools like Bedrock and SageMaker. Organizations can innovate with confidence, knowing their AI systems are governed by adaptive, intelligent protection.

[related-resource]

Continue reading
About the author
Adam Stevens
Senior Director of Product, Cloud | Darktrace

Blog

/

Network

/

November 19, 2025

Unmasking Vo1d: Inside Darktrace’s Botnet Detection

Unmasking Vo1d: Inside Darktrace’s Botnet DetectionDefault blog imageDefault blog image

What is Vo1d APK malware?

Vo1d malware first appeared in the wild in September 2024 and has since evolved into one of the most widespread Android botnets ever observed. This large-scale Android malware primarily targets smart TVs and low-cost Android TV boxes. Initially, Vo1d was identified as a malicious backdoor capable of installing additional third-party software [1]. Its functionality soon expanded beyond the initial infection to include deploying further malicious payloads, running proxy services, and conducting ad fraud operations. By early 2025, it was estimated that Vo1d had infected 1.3 to 1.6 million devices worldwide [2].

From a technical perspective, Vo1d embeds components into system storage to enable itself to download and execute new modules at any time. External researchers further discovered that Vo1d uses Domain Generation Algorithms (DGAs) to create new command-and-control (C2) domains, ensuring that regardless of existing servers being taken down, the malware can quickly reconnect to new ones. Previous published analysis identified dozens of C2 domains and hundreds of DGA seeds, along with new downloader families. Over time, Vo1d has grown increasingly sophisticated with clear signs of stronger obfuscation and encryption methods designed to evade detection [2].

Darktrace’s coverage

Earlier this year, Darktrace observed a surge in Vo1d-related activity across customer environments, with the majority of affected customers based in South Africa. Devices that had been quietly operating as expected began exhibiting unusual network behavior, including excessive DNS lookups. Open-source intelligence (OSINT) has long highlighted South Africa as one of the countries most impacted by Vo1d infections [2].

What makes the recent activity particularly interesting is that the surge observed by Darktrace appears to be concentrated specifically in South African environments. This localized spike suggests that a significant number of devices may have been compromised, potentially due to vulnerable software, outdated firmware, or even preloaded malware. Regions with high prevalence of low-cost, often unpatched devices are especially susceptible, as these everyday consumer electronics can be quietly recruited into the botnet’s network. This specifically appears to be the case with South Africa, where public reporting has documented widespread use of low-cost boxes, such as non-Google-certified Android TV sticks, that frequently ship with outdated firmware [3].

The initial triage highlighted the core mechanism Vo1d uses to remain resilient: its use of DGA. A DGA deterministically creates a large list of pseudo-random domain names on a predictable schedule. This enables the malware to compute hundreds of candidate domains using the same algorithm, instead of using a hard-coded single C2 hostname that defenders could easily block or take down. To ensure reproducible from the infected device’s perspective, Vo1d utilizes DGA seeds. These seeds might be a static string, a numeric value, or a combination of underlying techniques that enable infected devices to generate the same list of candidate domains for a time window, provided the same DGA code, seed, and date are used.

Interestingly, Vo1d’s DGA seeds do not appear to be entirely unpredictable, and the generated domains lack fully random-looking endings. As observed in Figure 1, there is a clear pattern in the names generated. In this case, researchers identified that while the first five characters would change to create the desired list of domain names, the trailing portion remained consistent as part of the seed: 60b33d7929a, which OSINT sources have linked to the Vo1d botnet. [2]. Darktrace’s Threat Research team also identified a potential second DGA seed, with devices in some cases also engaging in activity involving hostnames matching the regular expression /[a-z]{5}fc975904fc9\.(com|top|net). This second seed has not been reported by any OSINT vendors at the time of writing.

Another recurring characteristic observed across multiple cases was the choice of top-level domains (TLDs), which included .com, .net, and .top.

Figure 1: Advanced Search results showing DNS lookups, providing a glimpse on the DGA seed utilized.

The activity was detected by multiple models in Darktrace / NETWORK™, which triggered on devices making an unusually large volume of DNS requests for domains uncommon across the network.

During the network investigation, Darktrace analysts traced Vo1d’s infrastructure and uncovered an interesting pattern related to responder ASNs. A significant number of connections pointed to AS16509 (AMAZON-02). By hosting redirectors or C2 nodes inside major cloud environments, Vo1d is able to gain access to highly available and geographically diverse infrastructure. When one node is taken down or reported, operators can quickly enable a new node under a different IP within the same ASN. Another feature of cloud infrastructure that hardens Vo1d’s resilience is the fact that many organizations allow outbound connections to cloud IP ranges by default, assuming they are legitimate. Despite this, Darktrace was able to identify the rarity of these endpoints, identifying the unusualness of the activity.

Analysts further observed that once a generated domain successfully resolved, infected devices consistently began establishing outbound connections to ephemeral port ranges like TCP ports 55520 and 55521. These destination ports are atypical for standard web or DNS traffic. Even though the choice of high-numbered ports appears random, it is likely far from not accidental. Commonly used ports such as port 80 (HTTP) or 443 (HTTPS) are often subject to more scrutiny and deeper inspection or content filtering, making them riskier for attackers. On the other hand, unregistered ports like 55520 and 55521 are less likely to be blocked, providing a more covert channel that blends with outbound TCP traffic. This tactic helps evade firewall rules that focus on common service ports. Regardless, Darktrace was able to identify external connections on uncommon ports to locations that the network does not normally visit.

The continuation of the described activity was identified by Darktrace’s Cyber AI Analyst, which correlated individual events into a broader interconnected incident. It began with the multiple DNS requests for the algorithmically generated domains, followed by repeated connections to rare endpoints later confirmed as attacker-controlled infrastructure. Cyber AI Analyst’s investigation further enabled it to categorize the events as part of the “established foothold” phase of the attack.

Figure 2: Cyber AI Analyst incident illustrating the transition from DNS requests for DGA domains to connections with resolved attacker-controlled infrastructure.

Conclusion

The observations highlighted in this blog highlight the precision and scale of Vo1d’s operations, ranging from its DGA-generated domains to its covert use of high-numbered ports. The surge in affected South African environments illustrate how regions with many low-cost, often unpatched devices can become major hubs for botnet activity. This serves as a reminder that even everyday consumer electronics can play a role in cybercrime, emphasizing the need for vigilance and proactive security measures.

Credit to Christina Kreza (Cyber Analyst & Team Lead) and Eugene Chua (Principal Cyber Analyst & Team Lead)

Edited by Ryan Traill (Analyst Content Lead)

Appendices

Darktrace Model Detections

  • Anomalous Connection / Devices Beaconing to New Rare IP
  • Anomalous Connection / Multiple Connections to New External TCP Port
  • Anomalous Connection / Multiple Failed Connections to Rare Endpoint
  • Compromise / DGA Beacon
  • Compromise / Domain Fluxing
  • Compromise / Fast Beaconing to DGA
  • Unusual Activity / Unusual External Activity

List of Indicators of Compromise (IoCs)

  • 3.132.75[.]97 – IP address – Likely Vo1d C2 infrastructure
  • g[.]sxim[.]me – Hostname – Likely Vo1d C2 infrastructure
  • snakeers[.]com – Hostname – Likely Vo1d C2 infrastructure

Selected DGA IoCs

  • semhz60b33d7929a[.]com – Hostname – Possible Vo1d C2 DGA endpoint
  • ggqrb60b33d7929a[.]com – Hostname – Possible Vo1d C2 DGA endpoint
  • eusji60b33d7929a[.]com – Hostname – Possible Vo1d C2 DGA endpoint
  • uacfc60b33d7929a[.]com – Hostname – Possible Vo1d C2 DGA endpoint
  • qilqxfc975904fc9[.]top – Hostname – Possible Vo1d C2 DGA endpoint

MITRE ATT&CK Mapping

  • T1071.004 – Command and Control – DNS
  • T1568.002 – Command and Control – Domain Generation Algorithms
  • T1568.001 – Command and Control – Fast Flux DNS
  • T1571 – Command and Control – Non-Standard Port

[1] https://news.drweb.com/show/?lng=en&i=14900

[2] https://blog.xlab.qianxin.com/long-live-the-vo1d_botnet/

[3] https://mybroadband.co.za/news/broadcasting/596007-warning-for-south-africans-using-specific-types-of-tv-sticks.html

The content provided in this blog is published by Darktrace for general informational purposes only and reflects our understanding of cybersecurity topics, trends, incidents, and developments at the time of publication. While we strive to ensure accuracy and relevance, the information is provided “as is” without any representations or warranties, express or implied. Darktrace makes no guarantees regarding the completeness, accuracy, reliability, or timeliness of any information presented and expressly disclaims all warranties.

Nothing in this blog constitutes legal, technical, or professional advice, and readers should consult qualified professionals before acting on any information contained herein. Any references to third-party organizations, technologies, threat actors, or incidents are for informational purposes only and do not imply affiliation, endorsement, or recommendation.

Darktrace, its affiliates, employees, or agents shall not be held liable for any loss, damage, or harm arising from the use of or reliance on the information in this blog.

The cybersecurity landscape evolves rapidly, and blog content may become outdated or superseded. We reserve the right to update, modify, or remove any content.

Continue reading
About the author
Christina Kreza
Cyber Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI