Blog
/
/
January 5, 2021

How McLaren Racing Counters Advanced Email Threats

Learn how Darktrace helps McLaren Racing counter advanced email threats, ensuring robust cybersecurity for their operations.
No items found.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
No items found.
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
05
Jan 2021

Securing our team’s inboxes has long been a challenge at McLaren Racing. Even before COVID-19 hit, our workforce was incredibly dynamic; we’d been used to effectively setting up a remote office at tracks around the world every other weekend for the last 30 years. We were therefore used to people emailing at an extremely high rate while not always being centralised in a single location.

Collaboration is key for this team, with both our partners and key suppliers. Sharing data happens every day and a variety of methods are used – ranging from sensitive car designs to confidential track-side data.

The email attacks targeting our users have advanced considerably in the last year or two, with attackers seeking to solicit fraudulent payments, or trying to access our own intellectual property. Increasingly sophisticated social engineering attempts meant that our users continued to engage with these phishing and spoofing emails, despite having an array of tools and procedures in place to avoid such an eventuality.

Last year we extended Darktrace’s coverage to our inbox, and now have an intelligent AI security solution understanding ‘patterns of life’ for every Microsoft 365 user in order to spot attacks. Darktrace has allowed the security team here to stay ahead of the most advanced email threats, rather than respond retrospectively to attacks that manage to slip through traditional defences.

Training our workforce to spot attacks

Previously we relied on threat intelligence feeds and retrospective security tools that blocked malicious addresses, domains and URLs, but regardless, a small volume of phishing emails would still reach user mailboxes. Typically, these emails would be well-researched and highly contextualised, targeted to the recipient and sometimes indistinguishable from genuine communications. Despite running employee awareness programs, a proportion of these malicious emails would be acted on by users, leading to account compromises and fraud attempts. Our security resources were then consumed with reacting to these incidents rather than proactively improving security at McLaren Racing.

We run cyber awareness weeks, in collaboration with many of our partners, simulating our own phishing campaigns to teach our workforce how to spot attacks. But these education programs have become harder to communicate with the increase of remote working. Employee engagement was always key and that meant a larger resource strain on our security team, who would typically spend a lot of time with our senior stakeholders, helping them identify spoof emails and working with them on putting business processes in place.

This was a long and arduous process, and it’s difficult to expect our employees to spot the increasingly subtle signs of an email attack. With the sophistication of modern email attacks, the research that goes into them, and the level of social engineering in play, phishing attacks do inevitably still get through both humans and rudimentary defences.

Turning to cyber AI

Working with our partner Darktrace, we deployed their email security technology, Darktrace/Email, and worked on the configuration and installation together. We were able to see results in days. The volume of phishing emails reported by users fell substantially, and over time with Autonomous Response, the regular reviews of Darktrace/Email’s actions has led us to discover many phishing campaigns that we were previously unaware of.

Darktrace’s actions are taken in the context of the business, holding back emails only as a last resort (less than 1% in our environment), and catching only the genuinely malicious emails rather than producing a load of false positives. The actions are also targeted and proportionate, varying from moving emails to junk to converting attachments and locking links, giving us the flexibility we need.

With Darktrace/Email constantly learning and stopping advanced email attacks, the pressure has been taken off the rest of the team, who can now spend their time working with the business supporting new initiatives and collaborating on new areas of innovation.

Stopping a targeted credential-grabbing attack targeting the C-suite

As with many organisations, it’s often our C-suite that gets targeted by the most malicious mails, and Darktrace/Email recently detected an email sent to one of our executives, prompting them to sign a financial document. The email appeared to come from DocuSign, and contained a malicious link hidden behind the text ‘Review Document’.

Figure 1: An interactive snapshot of Darktrace/Email’s user interface surfacing the email
Figure 2: A screenshot of the email in question

If the link is clicked on, two types of scenarios usually follow from these kind of email attacks. Either the user is led to a fake (and often very convincing) login page which captures credentials, or the document itself contains a legitimate-looking invoice, but with one crucial element changed – the bank details. Accounts teams and CFOs are targeted with this kind of attack on a regular basis, but in this case, the attackers were after the executive’s credentials.

Had the executive clicked through and attempted to log in, they would unknowingly have been sending their credentials to the attacker, who then could have used this information to gather sensitive data from their inbox or other SaaS accounts, or send additional malicious emails from the account to make further inroads into our organisation.

The email was sent over the Imola GP race weekend, which was a high-pressured 48 hours for the whole team, as we ran in a new format without Friday practice, bringing a new intensity to the race weekend. However, Darktrace/Email was on guard, recognising the sender as a new contact and deeming the link to be suspicious. With suitable concerns over the email, Darktrace’s AI double locked the link and automatically moved the email to the executive’s Junk folder. All without having to alert the on-call cyber security team over the weekend.

With attacks like this coming in every day, relying on McLaren’s workforce to distinguish real from fake will never realistically protect us from every single threat. With credential harvesting and account takeover on the rise, it really felt like a matter of time before just one phishing email was successful and the floodgates were opened. But with Darktrace/Email, we can rest assured that we have a powerful AI solution keeping us safe, on and off the track.

No items found.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
No items found.

More in this series

No items found.

Blog

/

Identity

/

July 3, 2025

Top Eight Threats to SaaS Security and How to Combat Them

Default blog imageDefault blog image

The latest on the identity security landscape

Following the mass adoption of remote and hybrid working patterns, more critical data than ever resides in cloud applications – from Salesforce and Google Workspace, to Box, Dropbox, and Microsoft 365.

On average, a single organization uses 130 different Software-as-a-Service (SaaS) applications, and 45% of organizations reported experiencing a cybersecurity incident through a SaaS application in the last year.

As SaaS applications look set to remain an integral part of the digital estate, organizations are being forced to rethink how they protect their users and data in this area.

What is SaaS security?

SaaS security is the protection of cloud applications. It includes securing the apps themselves as well as the user identities that engage with them.

Below are the top eight threats that target SaaS security and user identities.

1.  Account Takeover (ATO)

Attackers gain unauthorized access to a user’s SaaS or cloud account by stealing credentials through phishing, brute-force attacks, or credential stuffing. Once inside, they can exfiltrate data, send malicious emails, or escalate privileges to maintain persistent access.

2. Privilege escalation

Cybercriminals exploit misconfigurations, weak access controls, or vulnerabilities to increase their access privileges within a SaaS or cloud environment. Gaining admin or superuser rights allows attackers to disable security settings, create new accounts, or move laterally across the organization.

3. Lateral movement

Once inside a network or SaaS platform, attackers move between accounts, applications, and cloud workloads to expand their foot- hold. Compromised OAuth tokens, session hijacking, or exploited API connections can enable adversaries to escalate access and exfiltrate sensitive data.

4. Multi-Factor Authentication (MFA) bypass and session hijacking

Threat actors bypass MFA through SIM swapping, push bombing, or exploiting session cookies. By stealing an active authentication session, they can access SaaS environments without needing the original credentials or MFA approval.

5. OAuth token abuse

Attackers exploit OAuth authentication mechanisms by stealing or abusing tokens that grant persistent access to SaaS applications. This allows them to maintain access even if the original user resets their password, making detection and mitigation difficult.

6. Insider threats

Malicious or negligent insiders misuse their legitimate access to SaaS applications or cloud platforms to leak data, alter configurations, or assist external attackers. Over-provisioned accounts and poor access control policies make it easier for insiders to exploit SaaS environments.

7. Application Programming Interface (API)-based attacks

SaaS applications rely on APIs for integration and automation, but attackers exploit insecure endpoints, excessive permissions, and unmonitored API calls to gain unauthorized access. API abuse can lead to data exfiltration, privilege escalation, and service disruption.

8. Business Email Compromise (BEC) via SaaS

Adversaries compromise SaaS-based email platforms (e.g., Microsoft 365 and Google Workspace) to send phishing emails, conduct invoice fraud, or steal sensitive communications. BEC attacks often involve financial fraud or data theft by impersonating executives or suppliers.

BEC heavily uses social engineering techniques, tailoring messages for a specific audience and context. And with the growing use of generative AI by threat actors, BEC is becoming even harder to detect. By adding ingenuity and machine speed, generative AI tools give threat actors the ability to create more personalized, targeted, and convincing attacks at scale.

Protecting against these SaaS threats

Traditionally, security leaders relied on tools that were focused on the attack, reliant on threat intelligence, and confined to a single area of the digital estate.

However, these tools have limitations, and often prove inadequate for contemporary situations, environments, and threats. For example, they may lack advanced threat detection, have limited visibility and scope, and struggle to integrate with other tools and infrastructure, especially cloud platforms.

AI-powered SaaS security stays ahead of the threat landscape

New, more effective approaches involve AI-powered defense solutions that understand the digital business, reveal subtle deviations that indicate cyber-threats, and action autonomous, targeted responses.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

/

July 2, 2025

Pre-CVE Threat Detection: 10 Examples Identifying Malicious Activity Prior to Public Disclosure of a Vulnerability

Default blog imageDefault blog image

Vulnerabilities are weaknesses in a system that can be exploited by malicious actors to gain unauthorized access or to disrupt normal operations. Common Vulnerabilities and Exposures (or CVEs) are a list of publicly disclosed cybersecurity vulnerabilities that can be tracked and mitigated by the security community.

When a vulnerability is discovered, the standard practice is to report it to the vendor or the responsible organization, allowing them to develop and distribute a patch or fix before the details are made public. This is known as responsible disclosure.

With a record-breaking 40,000 CVEs reported for 2024 and a predicted higher number for 2025 by the Forum for Incident Response and Security Teams (FIRST) [1], anomaly-detection is essential for identifying these potential risks. The gap between exploitation of a zero-day and disclosure of the vulnerability can sometimes be considerable, and retroactively attempting to identify successful exploitation on your network can be challenging, particularly if taking a signature-based approach.

Detecting threats without relying on CVE disclosure

Abnormal behaviors in networks or systems, such as unusual login patterns or data transfers, can indicate attempted cyber-attacks, insider threats, or compromised systems. Since Darktrace does not rely on rules or signatures, it can detect malicious activity that is anomalous even without full context of the specific device or asset in question.

For example, during the Fortinet exploitation late last year, the Darktrace Threat Research team were investigating a different Fortinet vulnerability, namely CVE 2024-23113, for exploitation when Mandiant released a security advisory around CVE 2024-47575, which aligned closely with Darktrace’s findings.

Retrospective analysis like this is used by Darktrace’s threat researchers to better understand detections across the threat landscape and to add additional context.

Below are ten examples from the past year where Darktrace detected malicious activity days or even weeks before a vulnerability was publicly disclosed.

ten examples from the past year where Darktrace detected malicious activity days or even weeks before a vulnerability was publicly disclosed.

Trends in pre-cve exploitation

Often, the disclosure of an exploited vulnerability can be off the back of an incident response investigation related to a compromise by an advanced threat actor using a zero-day. Once the vulnerability is registered and publicly disclosed as having been exploited, it can kick off a race between the attacker and defender: attack vs patch.

Nation-state actors, highly skilled with significant resources, are known to use a range of capabilities to achieve their target, including zero-day use. Often, pre-CVE activity is “low and slow”, last for months with high operational security. After CVE disclosure, the barriers to entry lower, allowing less skilled and less resourced attackers, like some ransomware gangs, to exploit the vulnerability and cause harm. This is why two distinct types of activity are often seen: pre and post disclosure of an exploited vulnerability.

Darktrace saw this consistent story line play out during several of the Fortinet and PAN OS threat actor campaigns highlighted above last year, where nation-state actors were seen exploiting vulnerabilities first, followed by ransomware gangs impacting organizations [2].

The same applies with the recent SAP Netweaver exploitations being tied to a China based threat actor earlier this spring with subsequent ransomware incidents being observed [3].

Autonomous Response

Anomaly-based detection offers the benefit of identifying malicious activity even before a CVE is disclosed; however, security teams still need to quickly contain and isolate the activity.

For example, during the Ivanti chaining exploitation in the early part of 2025, a customer had Darktrace’s Autonomous Response capability enabled on their network. As a result, Darktrace was able to contain the compromise and shut down any ongoing suspicious connectivity by blocking internal connections and enforcing a “pattern of life” on the affected device.

This pre-CVE detection and response by Darktrace occurred 11 days before any public disclosure, demonstrating the value of an anomaly-based approach.

In some cases, customers have even reported that Darktrace stopped malicious exploitation of devices several days before a public disclosure of a vulnerability.

For example, During the ConnectWise exploitation, a customer informed the team that Darktrace had detected malicious software being installed via remote access. Upon further investigation, four servers were found to be impacted, while Autonomous Response had blocked outbound connections and enforced patterns of life on impacted devices.

Conclusion

By continuously analyzing behavioral patterns, systems can spot unusual activities and patterns from users, systems, and networks to detect anomalies that could signify a security breach.

Through ongoing monitoring and learning from these behaviors, anomaly-based security systems can detect threats that traditional signature-based solutions might miss, while also providing detailed insights into threat tactics, techniques, and procedures (TTPs). This type of behavioral intelligence supports pre-CVE detection, allows for a more adaptive security posture, and enables systems to evolve with the ever-changing threat landscape.

Credit to Nathaniel Jones (VP, Security & AI Strategy, Field CISO), Emma Fougler (Global Threat Research Operations Lead), Ryan Traill (Analyst Content Lead)

References and further reading:

  1. https://www.first.org/blog/20250607-Vulnerability-Forecast-for-2025
  2. https://cloud.google.com/blog/topics/threat-intelligence/fortimanager-zero-day-exploitation-cve-2024-47575
  3. https://thehackernews.com/2025/05/china-linked-hackers-exploit-sap-and.html

Related Darktrace blogs:

*Self-reported by customer, confirmed afterwards.

**Updated January 2024 blog now reflects current findings

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI