Blog
/
/
March 11, 2020

How Darktrace Antigena Email Caught A Fearware Email Attack

Darktrace effectively detects and neutralizes fearware attacks evading gateway security tools. Learn more about how Antigena Email outsmarts cyber-criminals.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Dan Fein
VP, Product
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
11
Mar 2020

The cyber-criminals behind email attacks are well-researched and highly responsive to human behaviors and emotions, often seeking to evoke a specific reaction by leveraging topical information and current news. It’s therefore no surprise that attackers have attempted to latch onto COVID-19 in their latest effort to convince users to open their emails and click on seemingly benign links.

The latest email trend involves attackers who claim to be from the Center for Disease Control and Prevention, purporting to have emergency information about COVID-19. This is typical of a recent trend we’re calling ‘fearware’: cyber-criminals exploit a collective sense of fear and urgency, and coax users into clicking a malicious attachment or link. While the tactic is common, the actual campaigns contain terms and content that’s unique. There are a few patterns in the emails we’ve seen, but none reliably predictable enough to create hard and fast rules that will stop emails with new wording without causing false positives.

For example, looking for the presence of “CDC” in the email sender would easily fail when the emails begin to use new wording, like “WHO”. We’ve also seen a mismatch of links and their display text – with display text that reads “https://cdc.gov/[random-path]” while the actual link is a completely arbitrary URL. Looking for a pattern match on this would likely lead to false positives and would serve as a weak indicator at best.

The majority of these emails, especially the early ones, passed most of our customers’ existing defenses including Mimecast, Proofpoint, and Microsoft’s ATP, and were approved to be delivered directly to the end user’s inbox. Fortunately, these emails were immediately identified and actioned by Antigena Email, Darktrace’s Autonomous Response technology for the inbox.

Gateways: The Current Approach

Most organizations employ Secure Email Gateways (SEGs), like Mimecast or Proofpoint, which serve as an inline middleman between the email sender and the recipient’s email provider. SEGs have largely just become spam-detection engines, as these emails are obvious to spot when seen at scale. They can identify low-hanging fruit (i.e. emails easily detectable as malicious), but they fail to detect and respond when attacks become personalized or deviate even slightly from previously-seen attacks.

Figure 1: A high-level diagram depicting an Email Secure Gateway’s inline position.

SEGs tend to use lists of ‘known-bad’ IPs, domains, and file hashes to determine an email’s threat level – inherently failing to stop novel attacks when they use IPs, domains, or files which are new and have not yet been triaged or reported as malicious.

When advanced detection methods are used in gateway technologies, such as anomaly detection or machine learning, these are performed after the emails have been delivered, and require significant volumes of near-identical emails to trigger. The end result is very often to take an element from one of these emails and simply deny-list it.

When a SEG can’t make the determination on these factors, they may resort to a technique known as sandboxing, which creates an isolated environment for testing links and attachments seen in emails. Alternatively, they may turn to basic levels of anomaly detection that are inadequate due to their lack of context of data outside of emails. For sandboxing, most advanced threats now typically employ evasion techniques like an activation time that waits until a certain date before executing. When deployed, the sandboxing attempts see a harmless file, not recognizing the sleeping attack waiting within.

Figure 2: This email was registered only 2 hours prior to an email we processed.

Taking a sample COVID-19 email seen in a Darktrace customer’s environment, we saw a mix of domains used in what appears to be an attempt to avoid pattern detection. It would be improbable to have the domains used on a list of ‘known-bad’ domains anywhere at the time of the first email, as it was received a mere two hours after the domain was registered.

Figure 3: While other defenses failed to block these emails, Antigena Email immediately marked them as 100% unusual and held them back from delivery.

Antigena Email sits behind all other defenses, meaning we only see emails when those defenses fail to block a malicious email or deem an email is safe for delivery. In the above COVID-19 case, the first 5 emails were marked by MS ATP with a spam confidence score of 1, indicating Microsoft scanned the email and it was determined to be clean – so Microsoft took no action whatsoever.

The Cat and Mouse Game

Cyber-criminals are permanently in flux, quickly moving to outsmart security teams and bypass current defenses. Recognizing email as the easiest entry point into an organization, they are capitalizing on the inadequate detection of existing tools by mass-producing personalized emails through factory-style systems that machine-research, draft, and send with minimal human interaction.

Domains are cheap, proxies are cheap, and morphing files slightly to change the entire fingerprint of a file is easy – rendering any list of ‘known-bads’ as outdated within seconds.

Cyber AI: The New Approach

A new approach is required that relies on business context and an inside-out understanding of a corporation, rather than analyzing emails in isolation.

An Immune System Approach

Darktrace’s core technology uses AI to detect unusual patterns of behavior in the enterprise. The AI is able to do this successfully by following the human immune system’s core principles: develop an innate sense of ‘self’, and use that understanding to detect abnormal activity indicative of a threat.

In order to identify threats across the entire enterprise, the AI is able to understand normal patterns of behavior beyond just the network. This is crucial when working towards a goal of full business understanding. There’s a clear connection between activity in, for example, a SaaS application and a corresponding network event, or an event in the cloud and a corresponding event elsewhere within the business.

There’s an explicit relationship between what people do on their computers and the emails they send and receive. Having the context that a user has just visited a website before they receive an email from the same domain lends credibility to that email: it’s very common to visit a website, subscribe to a mailing list, and then receive an email within a few minutes. On the contrary, receiving an email from a brand-new sender, containing a link that nobody in the organization has ever been to, lends support to the fact that the link is likely no good and that perhaps the email should be removed from the user’s inbox.

Enterprise-Wide Context

Darktrace’s Antigena Email extends this interplay of data sources to the inbox, providing unique detection capabilities by leveraging full business context to inform email decisions.

The design of Antigena Email provides a fundamental shift in email security – from where the tool sits to how it understands and processes data. Unlike SEGs, which sit inline and process emails only as they first pass through and never again, Antigena Email sits passively, ingesting data that is journaled to it. The technology doesn’t need to wait until a domain is fingerprinted or sandboxed, or until it is associated with a campaign that has a famous name and all the buzz.

Antigena Email extends its unique position of not sitting inline to email re-assessment, processing emails millions of times instead of just once, enabling actions to be taken well after delivery. A seemingly benign email with popular links may become more interesting over time if there’s an event within the enterprise that was determined to have originated via an email, perhaps when a trusted site becomes compromised. While Antigena Network will mitigate the new threat on the network, Antigena Email will neutralize the emails that contain links associated with those found in the original email.

Figure 4: Antigena Email sits passively off email providers, continuously re-assessing and issuing updated actions as new data is introduced.

When an email first arrives, Antigena Email extracts its raw metadata, processes it multiple times at machine speed, and then many millions of times subsequently as new evidence is introduced (typically based on events seen throughout the business). The system corroborates what it is seeing with what it has previously understood to be normal throughout the corporate environment. For example, when domains are extracted from envelope information or links in the email body, they’re compared against the popularity of the domain on the company’s network.

Figure 5: The link above was determined to be 100% rare for the enterprise.

Dissecting the above COVID-19 linked email, we can extract some of the data made available in the Antigena Email user interface to see why Darktrace thought the email was so unusual. The domain in the ‘From’ address is rare, which is supplemental contextual information derived from data across the customer’s entire digital environment, not limited to just email but including network data as well. The emails’ KCE, KCD, and RCE indicate that it was the first time the sender had been seen in any email: there had been no correspondence with the sender in any way, and the email address had never been seen in the body of any email.

Figure 6: KCE, KCD, and RCE scores indicate no sender history with the organization.

Correlating the above, Antigena Email deemed these emails 100% anomalous to the business and immediately removed them from the recipients’ inboxes. The platform did this for the very first email, and every email thereafter – not a single COVID-19-based email got by Antigena Email.

Conclusion

Cyber AI does not distinguish ‘good’ from ‘bad’; rather whether an event is likely to belong or not. The technology looks only to compare data with the learnt patterns of activity in the environment, incorporating the new email (alongside its own scoring of the email) into its understanding of day-to-day context for the organization.

By asking questions like “Does this email appear to belong?” or “Is there an existing relationship between the sender and recipient?”, the AI can accurately discern the threat posed by a given email, and incorporate these findings into future modelling. A model cannot be trained to think just because the corporation received a higher volume of emails from a specific sender, these emails are all of a sudden considered normal for the environment. By weighing human interaction with the emails or domains to make decisions on math-modeling reincorporation, Cyber AI avoids this assumption, unless there’s legitimate correspondence from within the corporation back out to the sender.

The inbox has traditionally been the easiest point of entry into an organization. But the fundamental differences in approach offered by Cyber AI drastically increase Antigena Email’s detection capability when compared with gateway tools. Customers with and without email gateways in place have therefore seen a noticeable curbing of their email problem. In the continuous cat-and-mouse game with their adversaries, security teams augmenting their defenses with Cyber AI are finally regaining the advantage.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Dan Fein
VP, Product

More in this series

No items found.

Blog

/

Network

/

November 26, 2025

CastleLoader & CastleRAT: Behind TAG150’s Modular Malware Delivery System

CastleLoader & CastleRAT: Behind TAG150’s Modular Malware Delivery SystemDefault blog imageDefault blog image

What is TAG-150?

TAG-150, a relatively new Malware-as-a-Service (MaaS) operator, has been active since March 2025, demonstrating rapid development and an expansive, evolving infrastructure designed to support its malicious operations. The group employs two custom malware families, CastleLoader and CastleRAT, to compromise target systems, with a primary focus on the United States [1]. TAG-150’s infrastructure included numerous victim-facing components, such as IP addresses and domains functioning as command-and-control (C2) servers associated with malware families like SecTopRAT and WarmCookie, in addition to CastleLoader and CastleRAT [2].

As of May 2025, CastleLoader alone had infected a reported 469 devices, underscoring the scale and sophistication of TAG-150’s campaign [1].

What are CastleLoader and CastleRAT?

CastleLoader is a loader malware, primarily designed to download and install additional malware, enabling chain infections across compromised systems [3]. TAG-150 employs a technique known as ClickFix, which uses deceptive domains that mimic document verification systems or browser update notifications to trick victims into executing malicious scripts. Furthermore, CastleLoader leverages fake GitHub repositories that impersonate legitimate tools as a distribution method, luring unsuspecting users into downloading and installing malware on their devices [4].

CastleRAT, meanwhile, is a remote access trojan (RAT) that serves as one of the primary payloads delivered by CastleLoader. Once deployed, CastleRAT grants attackers extensive control over the compromised system, enabling capabilities such as keylogging, screen capturing, and remote shell access.

TAG-150 leverages CastleLoader as its initial delivery mechanism, with CastleRAT acting as the main payload. This two-stage attack strategy enhances the resilience and effectiveness of their operations by separating the initial infection vector from the final payload deployment.

How are they deployed?

Castleloader uses code-obfuscation methods such as dead-code insertion and packing to hinder both static and dynamic analysis. After the payload is unpacked, it connects to its command-and-control server to retrieve and running additional, targeted components.

Its modular architecture enables it to function both as a delivery mechanism and a staging utility, allowing threat actors to decouple the initial infection from payload deployment. CastleLoader typically delivers its payloads as Portable Executables (PEs) containing embedded shellcode. This shellcode activates the loader’s core module, which then connects to the C2 server to retrieve and execute the next-stage malware.[6]

Following this, attackers deploy the ClickFix technique, impersonating legitimate software distribution platforms like Google Meet or browser update notifications. These deceptive sites trick victims into copying and executing PowerShell commands, thereby initiating the infection kill chain. [1]

When a user clicks on a spoofed Cloudflare “Verification Stepprompt, a background request is sent to a PHP script on the distribution domain (e.g., /s.php?an=0). The server’s response is then automatically copied to the user’s clipboard using the ‘unsecuredCopyToClipboard()’ function. [7].

The Python-based variant of CastleRAT, known as “PyNightShade,” has been engineered with stealth in mind, showing minimal detection across antivirus platforms [2]. As illustrated in Figure 1, PyNightShade communicates with the geolocation API service ip-api[.]com, demonstrating both request and response behavior

Packet Capture (PCAP) of PyNightShade, the Python-based variant of CastleRAT, communicating with the geolocation API service ip-api[.]com.
Figure 1: Packet Capture (PCAP) of PyNightShade, the Python-based variant of CastleRAT, communicating with the geolocation API service ip-api[.]com.

Darktrace Coverage

In mid-2025, Darktrace observed a range of anomalous activities across its customer base that appeared linked to CastleLoader, including the example below from a US based organization.

The activity began on June 26, when a device on the customer’s network was observed connecting to the IP address 173.44.141[.]89, a previously unseen IP for this network along with the use of multiple user agents, which was also rare for the user.  It was later determined that the IP address was a known indicator of compromise (IoC) associated with TAG-150’s CastleRAT and CastleLoader operations [2][5].

Figure 2: Darktrace’s detection of a device making unusual connections to the malicious endpoint 173.44.141[.]89.

The device was observed downloading two scripts from this endpoint, namely ‘/service/download/data_5x.bin’ and ‘/service/download/data_6x.bin’, which have both been linked to CastleLoader infections by open-source intelligence (OSINT) [8]. The archives contains embedded shellcode, which enables attackers to execute arbitrary code directly in memory, bypassing disk writes and making detection by endpoint detection and response (EDR) tools significantly more difficult [2].

 Darktrace’s detection of two scripts from the malicious endpoint.
Figure 3: Darktrace’s detection of two scripts from the malicious endpoint.

In addition to this, the affected device exhibited a high volume of internal connections to a broad range of endpoints, indicating potential scanning activity. Such behavior is often associated with reconnaissance efforts aimed at mapping internal infrastructure.

Darktrace / NETWORK correlated these behaviors and generated an Enhanced Monitoring model, a high-fidelity security model designed to detect activity consistent with the early stages of an attack. These high-priority models are continuously monitored and triaged by Darktrace’s Security Operations Center (SOC) as part of the Managed Threat Detection and Managed Detection & Response services, ensuring that subscribed customers are promptly alerted to emerging threats.

Darktrace detected an unusual ZIP file download alongside the anomalous script, followed by internal connectivity. This activity was correlated under an Enhanced Monitoring model.
Figure 4: Darktrace detected an unusual ZIP file download alongside the anomalous script, followed by internal connectivity. This activity was correlated under an Enhanced Monitoring model.

Darktrace Autonomous Response

Fortunately, Darktrace’s Autonomous Response capability was fully configured, enabling it to take immediate action against the offending device by blocking any further connections external to the malicious endpoint, 173.44.141[.]89. Additionally, Darktrace enforced a ‘group pattern of life’ on the device, restricting its behavior to match other devices in its peer group, ensuring it could not deviate from expected activity, while also blocking connections over 443, shutting down any unwanted internal scanning.

Figure 5: Actions performed by Darktrace’s Autonomous Response to contain the ongoing attack.

Conclusion

The rise of the MaaS ecosystem, coupled with attackers’ growing ability to customize tools and techniques for specific targets, is making intrusion prevention increasingly challenging for security teams. Many threat actors now leverage modular toolkits, dynamic infrastructure, and tailored payloads to evade static defenses and exploit even minor visibility gaps. In this instance, Darktrace demonstrated its capability to counter these evolving tactics by identifying early-stage attack chain behaviors such as network scanning and the initial infection attempt. Autonomous Response then blocked the CastleLoader IP delivering the malicious ZIP payload, halting the attack before escalation and protecting the organization from a potentially damaging multi-stage compromise

Credit to Ahmed Gardezi (Cyber Analyst) Tyler Rhea (Senior Cyber Analyst)
Edited by Ryan Traill (Analyst Content Lead)

Appendices

Darktrace Model Detections

  • Anomalous Connection / Unusual Internal Connections
  • Anomalous File / Zip or Gzip from Rare External Location
  • Anomalous File / Script from Rare External Location
  • Initial Attack Chain Activity (Enhanced Monitoring Model)

MITRE ATT&CK Mapping

  • T15588.001 - Resource Development – Malware
  • TG1599 – Defence Evasion – Network Boundary Bridging
  • T1046 – Discovery – Network Service Scanning
  • T1189 – Initial Access

List of IoCs
IoC - Type - Description + Confidence

  • 173.44.141[.]89 – IP – CastleLoader C2 Infrastructure
  • 173.44.141[.]89/service/download/data_5x.bin – URI – CastleLoader Script
  • 173.44.141[.]89/service/download/data_6x.bin – URI  - CastleLoader Script
  • wsc.zip – ZIP file – Possible Payload

References

[1] - https://blog.polyswarm.io/castleloader

[2] - https://www.recordedfuture.com/research/from-castleloader-to-castlerat-tag-150-advances-operations

[3] - https://www.pcrisk.com/removal-guides/34160-castleloader-malware

[4] - https://www.scworld.com/brief/malware-loader-castleloader-targets-devices-via-fake-github-clickfix-phishing

[5] https://www.virustotal.com/gui/ip-address/173.44.141.89/community

[6] https://thehackernews.com/2025/07/castleloader-malware-infects-469.html

[7] https://www.cryptika.com/new-castleloader-attack-using-cloudflare-themed-clickfix-technique-to-infect-windows-computers/

[8] https://www.cryptika.com/castlebot-malware-as-a-service-deploys-range-of-payloads-linked-to-ransomware-attacks/

Continue reading
About the author

Blog

/

OT

/

November 20, 2025

Managing OT Remote Access with Zero Trust Control & AI Driven Detection

managing OT remote access with zero trust control and ai driven detectionDefault blog imageDefault blog image

The shift toward IT-OT convergence

Recently, industrial environments have become more connected and dependent on external collaboration. As a result, truly air-gapped OT systems have become less of a reality, especially when working with OEM-managed assets, legacy equipment requiring remote diagnostics, or third-party integrators who routinely connect in.

This convergence, whether it’s driven by digital transformation mandates or operational efficiency goals, are making OT environments more connected, more automated, and more intertwined with IT systems. While this convergence opens new possibilities, it also exposes the environment to risks that traditional OT architectures were never designed to withstand.

The modernization gap and why visibility alone isn’t enough

The push toward modernization has introduced new technology into industrial environments, creating convergence between IT and OT environments, and resulting in a lack of visibility. However, regaining that visibility is just a starting point. Visibility only tells you what is connected, not how access should be governed. And this is where the divide between IT and OT becomes unavoidable.

Security strategies that work well in IT often fall short in OT, where even small missteps can lead to environmental risk, safety incidents, or costly disruptions. Add in mounting regulatory pressure to enforce secure access, enforce segmentation, and demonstrate accountability, and it becomes clear: visibility alone is no longer sufficient. What industrial environments need now is precision. They need control. And they need to implement both without interrupting operations. All this requires identity-based access controls, real-time session oversight, and continuous behavioral detection.

The risk of unmonitored remote access

This risk becomes most evident during critical moments, such as when an OEM needs urgent access to troubleshoot a malfunctioning asset.

Under that time pressure, access is often provisioned quickly with minimal verification, bypassing established processes. Once inside, there’s little to no real-time oversight of user actions whether they’re executing commands, changing configurations, or moving laterally across the network. These actions typically go unlogged or unnoticed until something breaks. At that point, teams are stuck piecing together fragmented logs or post-incident forensics, with no clear line of accountability.  

In environments where uptime is critical and safety is non-negotiable, this level of uncertainty simply isn’t sustainable.

The visibility gap: Who’s doing what, and when?

The fundamental issue we encounter is the disconnect between who has access and what they are doing with it.  

Traditional access management tools may validate credentials and restrict entry points, but they rarely provide real-time visibility into in-session activity. Even fewer can distinguish between expected vendor behavior and subtle signs of compromise, misuse or misconfiguration.  

As a result, OT and security teams are often left blind to the most critical part of the puzzle, intent and behavior.

Closing the gaps with zero trust controls and AI‑driven detection

Managing remote access in OT is no longer just about granting a connection, it’s about enforcing strict access parameters while continuously monitoring for abnormal behavior. This requires a two-pronged approach: precision access control, and intelligent, real-time detection.

Zero Trust access controls provide the foundation. By enforcing identity-based, just-in-time permissions, OT environments can ensure that vendors and remote users only access the systems they’re explicitly authorized to interact with, and only for the time they need. These controls should be granular enough to limit access down to specific devices, commands, or functions. By applying these principles consistently across the Purdue Model, organizations can eliminate reliance on catch-all VPN tunnels, jump servers, and brittle firewall exceptions that expose the environment to excess risk.

Access control is only one part of the equation

Darktrace / OT complements zero trust controls with continuous, AI-driven behavioral detection. Rather than relying on static rules or pre-defined signatures, Darktrace uses Self-Learning AI to build a live, evolving understanding of what’s “normal” in the environment, across every device, protocol, and user. This enables real-time detection of subtle misconfigurations, credential misuse, or lateral movement as they happen, not after the fact.

By correlating user identity and session activity with behavioral analytics, Darktrace gives organizations the full picture: who accessed which system, what actions they performed, how those actions compared to historical norms, and whether any deviations occurred. It eliminates guesswork around remote access sessions and replaces it with clear, contextual insight.

Importantly, Darktrace distinguishes between operational noise and true cyber-relevant anomalies. Unlike other tools that lump everything, from CVE alerts to routine activity, into a single stream, Darktrace separates legitimate remote access behavior from potential misuse or abuse. This means organizations can both audit access from a compliance standpoint and be confident that if a session is ever exploited, the misuse will be surfaced as a high-fidelity, cyber-relevant alert. This approach serves as a compensating control, ensuring that even if access is overextended or misused, the behavior is still visible and actionable.

If a session deviates from learned baselines, such as an unusual command sequence, new lateral movement path, or activity outside of scheduled hours, Darktrace can flag it immediately. These insights can be used to trigger manual investigation or automated enforcement actions, such as access revocation or session isolation, depending on policy.

This layered approach enables real-time decision-making, supports uninterrupted operations, and delivers complete accountability for all remote activity, without slowing down critical work or disrupting industrial workflows.

Where Zero Trust Access Meets AI‑Driven Oversight:

  • Granular Access Enforcement: Role-based, just-in-time access that aligns with Zero Trust principles and meets compliance expectations.
  • Context-Enriched Threat Detection: Self-Learning AI detects anomalous OT behavior in real time and ties threats to access events and user activity.
  • Automated Session Oversight: Behavioral anomalies can trigger alerting or automated controls, reducing time-to-contain while preserving uptime.
  • Full Visibility Across Purdue Layers: Correlated data connects remote access events with device-level behavior, spanning IT and OT layers.
  • Scalable, Passive Monitoring: Passive behavioral learning enables coverage across legacy systems and air-gapped environments, no signatures, agents, or intrusive scans required.

Complete security without compromise

We no longer have to choose between operational agility and security control, or between visibility and simplicity. A Zero Trust approach, reinforced by real-time AI detection, enables secure remote access that is both permission-aware and behavior-aware, tailored to the realities of industrial operations and scalable across diverse environments.

Because when it comes to protecting critical infrastructure, access without detection is a risk and detection without access control is incomplete.

Continue reading
About the author
Pallavi Singh
Product Marketing Manager, OT Security & Compliance
Your data. Our AI.
Elevate your network security with Darktrace AI