Blog
/
/
June 21, 2018

Unsupervised Machine Learning and JA3 for Enhanced Security

Unlock the true power of Darktrace's algorithms. Learn how JA3 enhances cybersecurity defenses with unique TLS/SSL fingerprints & unsupervised machine learning.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
21
Jun 2018

Introducing JA3

JA3 is a methodology for fingerprinting Transport Layer Security applications. It was first posted on GitHub in June 2017 and is the work of Salesforce researchers John Althouse, Jeff Atkinson, and Josh Atkins. The JA3 TLS/SSL fingerprints created can overlap between applications but are still a great Indicator of Compromise (IoC). Fingerprinting is achieved by creating a hash of 5 decimal fields of the Client Hello message that is sent in the initial stages of an TLS/SSL session.

JA3 is an interesting approach to the increasing usage of encryption in networks. There is also a clear uptick in cyber-attacks using encrypted command and control (C2) channels – such as HTTPS – for malware communication.

The benefits of JA3 for enhancing rules-and-signatures security

These near-unique fingerprints can be used to enhance traditional cyber security approaches such as whitelisting, deny-listing, and searching for IoCs.

Let’s take the following JA3 hash for example: 3e860202fc555b939e83e7a7ab518c38. According to one of the public lists that maps JA3s to applications, this JA3 hash is associated with the ‘hola_svc’ application. This is the infamous Hola VPN solution that is non-compliant in most enterprise networks. On the other hand, the following hash is associated with the popular messenger software Slack: a5aa6e939e4770e3b8ac38ce414fd0d5. Traditional cyber security tools can use these hashes like traditional signatures to search for instances of them in data sets or trying to deny-list malicious ones.

While there is some merit to this approach, it comes with all the known limitations of rules-and-signatures defenses, such as the overlaps in signatures, the inability to detect unknown threats, as well as the added complexity of having to maintain a database of known signatures.

JA3 in Darktrace

Darktrace creates JA3 hashes for every TLS/SSL connection it encounters. This is incredibly powerful in a number of ways. First, the JA3 can add invaluable context to a threat hunt. Second, Darktrace can also be queried to see if a particular JA3 was encountered in the network, thus providing actionable intelligence during incident response if JA3 IoCs are known to the incident responders.

Things become much more interesting once we apply our unsupervised machine learning to JA3: Darktrace’s AI algorithms autonomously detect which JA3s are anomalous for the network as a whole and which JA3s are unusual for specific devices.

It basically tells a cyber security expert: This JA3 (3e860202fc555b939e83e7a7ab518c38) has never been seen in the network before and it is only used by one device. It indicates that an application, which is used by nobody else on the network, is initiating TLS/SSL connections. In our experience, this is most often the case for malware or non-compliant software. At this stage, we are observing anomalous behavior.

Darktrace’s AI combines these IoCs (Unusual Network JA3, Unusual Device JA3, …) with many other weak indicators to detect the earliest signs of an emerging threat, including previously unknown threats, without using rules or hard-coded thresholds.

Catching Red-Teams and domain fronting with JA3

The following is an example where Darktrace detected a Red-Team’s C2 communication by observing anomalous JA3 behavior.

The unsupervised machine learning algorithms identified a desktop device using a JA3 that was 100% unusual for the network connecting to an external domain using a Let’s Encrypt certificate, which, along with self-signed certificates, is often abused by malicious actors. As well as the JA3, the domain was also 100% rare for the network – nobody else visited it:

It turned out that a Red-Team had registered a domain that was very similar to the victim’s legitimate domain: www.companyname[.]com (legitimate domain) vs. www.companyname[.]online (malicious domain). This was intentionally done to avoid suspicion and human analysis. Over a 7-day period in a 2,000-device environment, this was the only time that Darktrace flagged unusual behavior of this kind.

As the C2 traffic was encrypted (therefore no intrusion detection was possible on the payload) and the domain was non-suspicious (no reputation-based deny-listing worked), this C2 had remained undetected by the rest of the security stack.

Combining unsupervised machine learning with JA3 is incredibly powerful for the detection of domain fronting. Domain fronting is a popular technique to circumvent censorship and to hide C2 traffic. While some infrastructure providers take action to prevent domain fronting on their end, it is still prevalent and actively used by attackers.

The only agreed-upon method within wide parts of the cyber-security community to detect domain fronting appears to be TLS/SSL inspection. This usually involved breaking up encrypted communication to inspect the clear-text payloads. While this works, it commonly involves additional infrastructure, network restructuring and comes with privacy issues – especially in the context of GDPR.

Unsupervised machine learning makes the detection of domain fronting without having to break up encrypted traffic possible by combining unusual JA3 detection with other anomalies such as beaconing. A good start for a domain fronting threat hunt? A device beaconing to an anomalous CDN with an unusual JA3 hash.

Conclusion

JA3 is not a silver bullet to pre-empt malware compromise. As a signature-based solution, it shares the same limitations of all other defenses that rely on pre-identified threats or deny-lists: having to play a constant game of catch-up with innovative attackers. However, as a novel means of identifying TLS/SSL applications, JA3 hashing can be leveraged as a powerful network behavioral indicator, an additional metric that can flag the use of unauthorized or risky software, or as a means of identifying emerging malware compromises in the initial stages of C2 communication. This is made possible through the power of unsupervised machine learning.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO

More in this series

No items found.

Blog

/

Identity

/

July 3, 2025

Top Eight Threats to SaaS Security and How to Combat Them

Default blog imageDefault blog image

The latest on the identity security landscape

Following the mass adoption of remote and hybrid working patterns, more critical data than ever resides in cloud applications – from Salesforce and Google Workspace, to Box, Dropbox, and Microsoft 365.

On average, a single organization uses 130 different Software-as-a-Service (SaaS) applications, and 45% of organizations reported experiencing a cybersecurity incident through a SaaS application in the last year.

As SaaS applications look set to remain an integral part of the digital estate, organizations are being forced to rethink how they protect their users and data in this area.

What is SaaS security?

SaaS security is the protection of cloud applications. It includes securing the apps themselves as well as the user identities that engage with them.

Below are the top eight threats that target SaaS security and user identities.

1.  Account Takeover (ATO)

Attackers gain unauthorized access to a user’s SaaS or cloud account by stealing credentials through phishing, brute-force attacks, or credential stuffing. Once inside, they can exfiltrate data, send malicious emails, or escalate privileges to maintain persistent access.

2. Privilege escalation

Cybercriminals exploit misconfigurations, weak access controls, or vulnerabilities to increase their access privileges within a SaaS or cloud environment. Gaining admin or superuser rights allows attackers to disable security settings, create new accounts, or move laterally across the organization.

3. Lateral movement

Once inside a network or SaaS platform, attackers move between accounts, applications, and cloud workloads to expand their foot- hold. Compromised OAuth tokens, session hijacking, or exploited API connections can enable adversaries to escalate access and exfiltrate sensitive data.

4. Multi-Factor Authentication (MFA) bypass and session hijacking

Threat actors bypass MFA through SIM swapping, push bombing, or exploiting session cookies. By stealing an active authentication session, they can access SaaS environments without needing the original credentials or MFA approval.

5. OAuth token abuse

Attackers exploit OAuth authentication mechanisms by stealing or abusing tokens that grant persistent access to SaaS applications. This allows them to maintain access even if the original user resets their password, making detection and mitigation difficult.

6. Insider threats

Malicious or negligent insiders misuse their legitimate access to SaaS applications or cloud platforms to leak data, alter configurations, or assist external attackers. Over-provisioned accounts and poor access control policies make it easier for insiders to exploit SaaS environments.

7. Application Programming Interface (API)-based attacks

SaaS applications rely on APIs for integration and automation, but attackers exploit insecure endpoints, excessive permissions, and unmonitored API calls to gain unauthorized access. API abuse can lead to data exfiltration, privilege escalation, and service disruption.

8. Business Email Compromise (BEC) via SaaS

Adversaries compromise SaaS-based email platforms (e.g., Microsoft 365 and Google Workspace) to send phishing emails, conduct invoice fraud, or steal sensitive communications. BEC attacks often involve financial fraud or data theft by impersonating executives or suppliers.

BEC heavily uses social engineering techniques, tailoring messages for a specific audience and context. And with the growing use of generative AI by threat actors, BEC is becoming even harder to detect. By adding ingenuity and machine speed, generative AI tools give threat actors the ability to create more personalized, targeted, and convincing attacks at scale.

Protecting against these SaaS threats

Traditionally, security leaders relied on tools that were focused on the attack, reliant on threat intelligence, and confined to a single area of the digital estate.

However, these tools have limitations, and often prove inadequate for contemporary situations, environments, and threats. For example, they may lack advanced threat detection, have limited visibility and scope, and struggle to integrate with other tools and infrastructure, especially cloud platforms.

AI-powered SaaS security stays ahead of the threat landscape

New, more effective approaches involve AI-powered defense solutions that understand the digital business, reveal subtle deviations that indicate cyber-threats, and action autonomous, targeted responses.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

/

July 2, 2025

Pre-CVE Threat Detection: 10 Examples Identifying Malicious Activity Prior to Public Disclosure of a Vulnerability

Default blog imageDefault blog image

Vulnerabilities are weaknesses in a system that can be exploited by malicious actors to gain unauthorized access or to disrupt normal operations. Common Vulnerabilities and Exposures (or CVEs) are a list of publicly disclosed cybersecurity vulnerabilities that can be tracked and mitigated by the security community.

When a vulnerability is discovered, the standard practice is to report it to the vendor or the responsible organization, allowing them to develop and distribute a patch or fix before the details are made public. This is known as responsible disclosure.

With a record-breaking 40,000 CVEs reported for 2024 and a predicted higher number for 2025 by the Forum for Incident Response and Security Teams (FIRST) [1], anomaly-detection is essential for identifying these potential risks. The gap between exploitation of a zero-day and disclosure of the vulnerability can sometimes be considerable, and retroactively attempting to identify successful exploitation on your network can be challenging, particularly if taking a signature-based approach.

Detecting threats without relying on CVE disclosure

Abnormal behaviors in networks or systems, such as unusual login patterns or data transfers, can indicate attempted cyber-attacks, insider threats, or compromised systems. Since Darktrace does not rely on rules or signatures, it can detect malicious activity that is anomalous even without full context of the specific device or asset in question.

For example, during the Fortinet exploitation late last year, the Darktrace Threat Research team were investigating a different Fortinet vulnerability, namely CVE 2024-23113, for exploitation when Mandiant released a security advisory around CVE 2024-47575, which aligned closely with Darktrace’s findings.

Retrospective analysis like this is used by Darktrace’s threat researchers to better understand detections across the threat landscape and to add additional context.

Below are ten examples from the past year where Darktrace detected malicious activity days or even weeks before a vulnerability was publicly disclosed.

ten examples from the past year where Darktrace detected malicious activity days or even weeks before a vulnerability was publicly disclosed.

Trends in pre-cve exploitation

Often, the disclosure of an exploited vulnerability can be off the back of an incident response investigation related to a compromise by an advanced threat actor using a zero-day. Once the vulnerability is registered and publicly disclosed as having been exploited, it can kick off a race between the attacker and defender: attack vs patch.

Nation-state actors, highly skilled with significant resources, are known to use a range of capabilities to achieve their target, including zero-day use. Often, pre-CVE activity is “low and slow”, last for months with high operational security. After CVE disclosure, the barriers to entry lower, allowing less skilled and less resourced attackers, like some ransomware gangs, to exploit the vulnerability and cause harm. This is why two distinct types of activity are often seen: pre and post disclosure of an exploited vulnerability.

Darktrace saw this consistent story line play out during several of the Fortinet and PAN OS threat actor campaigns highlighted above last year, where nation-state actors were seen exploiting vulnerabilities first, followed by ransomware gangs impacting organizations [2].

The same applies with the recent SAP Netweaver exploitations being tied to a China based threat actor earlier this spring with subsequent ransomware incidents being observed [3].

Autonomous Response

Anomaly-based detection offers the benefit of identifying malicious activity even before a CVE is disclosed; however, security teams still need to quickly contain and isolate the activity.

For example, during the Ivanti chaining exploitation in the early part of 2025, a customer had Darktrace’s Autonomous Response capability enabled on their network. As a result, Darktrace was able to contain the compromise and shut down any ongoing suspicious connectivity by blocking internal connections and enforcing a “pattern of life” on the affected device.

This pre-CVE detection and response by Darktrace occurred 11 days before any public disclosure, demonstrating the value of an anomaly-based approach.

In some cases, customers have even reported that Darktrace stopped malicious exploitation of devices several days before a public disclosure of a vulnerability.

For example, During the ConnectWise exploitation, a customer informed the team that Darktrace had detected malicious software being installed via remote access. Upon further investigation, four servers were found to be impacted, while Autonomous Response had blocked outbound connections and enforced patterns of life on impacted devices.

Conclusion

By continuously analyzing behavioral patterns, systems can spot unusual activities and patterns from users, systems, and networks to detect anomalies that could signify a security breach.

Through ongoing monitoring and learning from these behaviors, anomaly-based security systems can detect threats that traditional signature-based solutions might miss, while also providing detailed insights into threat tactics, techniques, and procedures (TTPs). This type of behavioral intelligence supports pre-CVE detection, allows for a more adaptive security posture, and enables systems to evolve with the ever-changing threat landscape.

Credit to Nathaniel Jones (VP, Security & AI Strategy, Field CISO), Emma Fougler (Global Threat Research Operations Lead), Ryan Traill (Analyst Content Lead)

References and further reading:

  1. https://www.first.org/blog/20250607-Vulnerability-Forecast-for-2025
  2. https://cloud.google.com/blog/topics/threat-intelligence/fortimanager-zero-day-exploitation-cve-2024-47575
  3. https://thehackernews.com/2025/05/china-linked-hackers-exploit-sap-and.html

Related Darktrace blogs:

*Self-reported by customer, confirmed afterwards.

**Updated January 2024 blog now reflects current findings

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI