Blog
/
/
August 12, 2025

ISO/IEC 42001: 2023: A milestone in AI standards at Darktrace  

This blog announces Darktrace’s ISO/IEC 42001:2023 accreditation, one of the first in the cybersecurity industry, and explains what this AI management standard means. We cover the certification process, its key requirements, and the benefits for customers. Most importantly, we outline why ISO/IEC 42001 is becoming the litmus test for trustworthy AI, a mark that separates vendors truly innovating in AI from those simply marketing it.
No items found.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
No items found.
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
12
Aug 2025

Darktrace announces ISO/IEC 42001 accreditation

Darktrace is thrilled to announce that we are one of the first cybersecurity companies to achieve ISO/IEC 42001 accreditation for the responsible management of AI systems. This isn’t just a milestone for us, it’s a sign of where the AI industry is headed. ISO/IEC 42001 is quickly emerging as the global benchmark for separating vendors who truly innovate with AI from those who simply market it.

For customers, it’s more than a badge, it’s assurance that a vendor’s AI is built responsibly, governed with rigor, and backed by the expertise of real AI teams, keeping your data secure while driving meaningful innovation.

This is a critical milestone for Darktrace as we continue to strengthen our offering, mature our governance and compliance frameworks for AI management, expand our research and development capabilities, and further our commitment to the development of responsible AI.  

It cements our commitment to providing secure, trustworthy and proactive cybersecurity solutions that our customers can rely on and complements our existing compliance framework, consisting of certifications for:

  • ISO/IEC 27001:2022 – Information Security Management System
  • ISO/IEC 27018:2019 – Protection of Personally Identifiable Information in Public Cloud Environments
  • Cyber Essentials – A UK Government-backed certification scheme for cybersecurity baselines

What is ISO/IEC 42001:2023?

In response to the unique challenges that AI poses, the International Organization for Standardization (ISO) introduced the ISO/IEC 42001:2023 framework in December 2023 to help organizations providing or utilizing AI-based products or services to demonstrate responsible development and use of AI systems. To achieve the accreditation, organizations are required to establish, implement, maintain, and continually improve their Artificial Intelligence Management System (AIMS).

ISO/IEC 42001:2023 is the first of its kind, providing valuable guidance for this rapidly changing field of technology. It addresses the unique ethical and technical challenges AI poses by setting out a structured way to manage risks such as transparency, accuracy and misuse without losing opportunities. By design, it balances the benefits of innovation against the necessity of a proper governance structure.

Being certified means the organization has met the requirements of the ISO/IEC 42001 standard, is conforming to all applicable regulatory and legislative requirements, and has implemented thorough processes to address AI risks and opportunities.

What is the  ISO/IEC 42001:2023 accreditation process?

Darktrace partnered with BSI over an 11-month period to undertake the accreditation. The process involved developing and implementing a comprehensive AI management system that builds on our existing certified frameworks, addresses the risks and opportunities of using and developing cutting-edge AI systems, underpins our AI objectives and policies, and meets our regulatory and legal compliance requirements.

The AI Management System, which takes in our people, processes, and products, was extensively audited by BSI against the requirements of the standard, covering all aspects spanning the design of our AI, use of AI within the organization, and our competencies, resources and HR processes. It is an in-depth process that we’re thrilled to have undertaken, making us one of the first in our industry to achieve certification for a globally recognized AI system.

The scope of Darktrace’s certification is particularly wide due to our unique Self-Learning approach to AI for cybersecurity, which uses multi-layered AI systems consisting of varied AI techniques to address distinct cybersecurity tasks. The certification encompasses production and provision of AI systems based on anomaly detection, clustering, classifiers, regressors, neural networks, proprietary and third-party large language models for proactive, detection, response and recovery cybersecurity applications. Darktrace additionally elected to adopt all Annex A controls present in the ISO/IEC 42001 standard.

What are the benefits of an AI Management System?

While AI is not a new or novel concept, the AI industry has accelerated at an unprecedented rate in the past few years, increasing operational efficiency, driving innovation, and automating cumbersome processes in the workplace.

At the same time, the data privacy, security and bias risks created by rapid innovation in AI have been well documented.

Thus, an AI Management System enables organizations to confidently establish and adhere to governance in a way that conforms to best practice, promotes adherence, and is in line with current and emerging regulatory standards.

Not only is this vital in a unique and rapidly evolving field like AI, it additionally helps organization’s balance the drive for innovation with the risks the technology can present, helping to get the best out of their AI development and usage.

What are the key components of ISO/IEC 42001?

The Standard puts an emphasis on responsible AI development and use, requiring organizations to:

  • Establish and implement an AI Management System
  • Commit to the responsible development of AI against established, measurable objectives
  • Have in place a process to manage, monitor and adapt to risks in an effective manner
  • Commit to continuous improvement of their AI Management System

The AI Standard is similar in composition to other ISO standards, such as ISO/IEC 27001:2022, which many organizations may already be familiar with. Further information as to the structure of ISO/IEC 42001 can be found in Annex A.

What it means for Darktrace’s customers

Our certification against ISO/IEC 42001 demonstrates Darktrace’s commitment to delivering industry-leading Self-Learning AI in the name of cybersecurity resilience. Our stakeholders, customers and partners can be confident that Darktrace is responsibly, ethically and securely developing its AI systems, and is managing the use of AI in our day-to-day operations in a compliant, secure and ethical manner. It means:

  • You can trust our AI: We can demonstrate our AI is developed responsibly, in a transparent manner and in accordance with ethical rules. For more information and to learn about Darktrace's responsible AI in cybersecurity approach, please see here.
  • Our products are backed by innovation and integrity: Darktrace drives cutting edge AI innovation with ethical governance and customer trust at its core.
  • You are partnering with an organization which stays ahead of regulatory changes: In an evolving AI landscape, partnering with Darktrace helps you to stay prepared for emerging compliance and regulatory demands in your supply chain.

Achieving ISO/IEC 42001:2023 certification is not just a checkpoint for us. It represents our unwavering commitment to setting a higher standard for AI in cybersecurity. It reaffirms our leadership in building and implementing responsible AI and underscores our mission to continuously innovate and lead the way in the industry.

Why ISO/IEC 42001 matters for every AI vendor you trust

In a market where “AI” can mean anything from a true, production-grade system to a thin marketing layer, ISO/IEC 42001 acts as a critical differentiator. Vendors who have earned this certification aren’t just claiming they build responsible AI, they’ve proven it through an independent, rigorous audit of how they design, deploy, and manage their systems.

For you as a customer, that means:

You know their AI is real: Certified vendors have dedicated, skilled AI teams building and maintaining systems that meet measurable standards, not just repackaging off-the-shelf tools with an “AI” label.

Your data is safeguarded: Compliance with ISO/IEC 42001 includes stringent governance over data use, bias, transparency, and risk management.

You’re partnering with innovators: The certification process encourages continuous improvement, meaning your vendor is actively advancing AI capabilities while keeping ethics and security in focus.

In short, ISO/IEC 42001 is quickly becoming the global badge of credible AI development. If your vendor can’t show it, it’s worth asking how they manage AI risk, whether their governance is mature enough, and how they ensure innovation doesn’t outpace accountability.

Annex A: The Structure of ISO/IEC 42001

ISO/IEC 42001 has requirements for which seven adherence is required for an organization seeking to obtain or maintain its certification:

  • Context of the organization – organizations need to demonstrate an understanding of the internal and external factors influencing the organization’s AI Management System.
  • Leadership – senior leadership teams need to be committed to implementing AI governance within their organizations, providing direction and support across all aspects AI Management System lifecycle.
  • Planning – organizations need to put meaningful and manageable processes in place to identify risks and opportunities related to the AI Management System to achieve responsible AI objectives and mitigate identified risks.
  • Support – demonstrating a commitment to provisioning of adequate resources, information, competencies, awareness and communication for the AI Management System is a must to ensure that proper oversight and management of the system and its risks can be achieved.
  • Operation – establishing processes necessary to support the organization’s AI system development and usage, in conformance with the organization’s AI policy, objectives and requirements of the standard. Correcting the course of any deviations within good time is paramount.
  • Performance evaluation – the organization must be able to demonstrate that it has the capability and willingness to regularly monitor and evaluate the performance of the AI Management System effectively, including actioning any corrections and introducing new processes where relevant.
  • Improvement – relying on an existing process will not be sufficient to ensure compliance with the AI Standard. Organizations must commit to monitoring of existing systems and processes to ensure that the AI Management System is continually enhanced and improved.

To assist organizations in seeking the above, four annexes are included within the AI Standard’s rubric, which outline the objectives and measures an organization may wish to implement to address risks related to the design and operation of their AI Management System through the introduction of normative controls. Whilst they are not prescriptive, Darktrace has implemented the requirements of these Annexes to enable it to appropriately demonstrate the effectiveness of its AI Management System. We have placed a heavy emphasis on Annex A which contains these normative controls which we, and other organizations seeking to achieve certification, can align with to address the objectives and measures, such as:

  • Enforcement of policies related to AI.
  • Setting responsibilities within the organization, and expectation of roles and responsibilities.
  • Creating processes and guidelines for escalating and handling AI concerns.
  • Making resources for AI systems available to users.
  • Assessing impacts of AI systems internally and externally.
  • Implementing processes across the entire AI system life cycle.
  • Understanding treatment of Data for AI systems.
  • Defining what information is, and should be available, for AI systems.
  • Considering and defining use cases for the AI systems.
  • Considering the impact of the AI System on third-party and customer relationships.

The remaining annexes provide guidance on implementing Annex A’s controls, objectives and primary risk sources of AI implementation, and considering how the AI Management System can be used across domains or sectors responsibly.

[related-resource]

Responsible AI in cybersecurity: Darktrace’s five guiding principles

This whitepaper outlines Darktrace’s five principles for building secure, trustworthy, and responsible AI for cybersecurity.

No items found.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
No items found.

More in this series

No items found.

Blog

/

Network

/

October 30, 2025

WSUS Exploited: Darktrace’s Analysis of Post-Exploitation Activities Related to CVE-2025-59287

Default blog imageDefault blog image

Introduction

On October 14, 2025, Microsoft disclosed a new critical vulnerability affecting the Windows Server Update Service (WSUS), CVE-2025-59287.  Exploitation of the vulnerability could allow an unauthenticated attacker to remotely execute code [1][6].

WSUS allows for centralized distribution of Microsoft product updates [3]; a server running WSUS is likely to have significant privileges within a network making it a valuable target for threat actors. While WSUS servers are not necessarily expected to be open to the internet, open-source intelligence (OSINT) has reported  thousands of publicly exposed instances that may be vulnerable to exploitation [2].

Microsoft’s initial ‘Patch Tuesday’ update for this vulnerability did not fully mitigate the risk, and so an out-of-band update followed on October 23 [4][5] . Widespread exploitation of this vulnerability started to be observed shortly after the security update [6], prompting CISA to add CVE-2025-59287 to its Known Exploited Vulnerability Catalog (KEV) on October 24 [7].

Attack Overview

The Darktrace Threat Research team have recently identified multiple potential cases of CVE-2025-59287 exploitation, with two detailed here. While the likely initial access method is consistent across the cases, the follow-up activities differed, demonstrating the variety in which such a CVE can be exploited to fulfil each attacker’s specific goals.

The first signs of suspicious activity across both customers were detected by Darktrace on October 24, the same day this vulnerability was added to CISA’s KEV. Both cases discussed here involve customers based in the United States.

Case Study 1

The first case, involving a customer in the Information and Communication sector, began with an internet-facing device making an outbound connection to the hostname webhook[.]site. Observed network traffic indicates the device was a WSUS server.

OSINT has reported abuse of the workers[.]dev service in exploitation of CVE-2025-59287, where enumerated network information gathered through running a script on the compromised device was exfiltrated using this service [8].

In this case, the majority of connectivity seen to webhook[.]site involved a PowerShell user agent; however, cURL user agents were also seen with some connections taking the form of HTTP POSTs. This connectivity appears to align closely with OSINT reports of CVE-2025-59287 post-exploitation behaviour [8][9].

Connections to webhook[.]site continued until October 26. A single URI was seen consistently until October 25, after which the connections used a second URI with a similar format.

Later on October 26, an escalation in command-and-control (C2) communication appears to have occurred, with the device starting to make repeated connections to two rare workers[.]dev subdomains (royal-boat-bf05.qgtxtebl.workers[.]dev & chat.hcqhajfv.workers[.]dev), consistent with C2 beaconing. While workers[.]dev is associated with the legitimate Cloudflare Workers service, the service is commonly abused by malicious actors for C2 infrastructure. The anomalous nature of the connections to both webhook[.]site and workers[.]dev led to Darktrace generating multiple alerts including high-fidelity Enhanced Monitoring alerts and alerts for Darktrace’s Autonomous Response.

Infrastructure insight

Hosted on royal-boat-bf05.qgtxtebl.workers[.]dev is a Microsoft Installer file (MSI) named v3.msi.

Screenshot of v3.msi content.
Figure 1: Screenshot of v3.msi content.

Contained in the MSI file is two Cabinet files named “Sample.cab” and “part2.cab”. After extracting the contents of the cab files, a file named “Config” and a binary named “ServiceEXE”. ServiceEXE is the legitimate DFIR tool Velociraptor, and “Config” contains the configuration details, which include chat.hcqhajfv.workers[.]dev as the server_url, suggesting that Velociraptor is being used as a tunnel to the C2. Additionally, the configuration points to version 0.73.4, a version of Velociraptor that is vulnerable to CVE-2025-6264, a privilege escalation vulnerability.

 Screenshot of Config file.
Figure 2: Screenshot of Config file.

Velociraptor, a legitimate security tool maintained by Rapid7, has been used recently in malicious campaigns. A vulnerable version of tool has been used by threat actors for command execution and endpoint takeover, while other campaigns have used Velociraptor to create a tunnel to the C2, similar to what was observed in this case [10] .

The workers[.]dev communication continued into the early hours of October 27. The most recent suspicious behavior observed on the device involved an outbound connection to a new IP for the network - 185.69.24[.]18/singapure - potentially indicating payload retrieval.

The payload retrieved from “/singapure” is a UPX packed Windows binary. After unpacking the binary, it is an open-source Golang stealer named “Skuld Stealer”. Skuld Stealer has the capabilities to steal crypto wallets, files, system information, browser data and tokens. Additionally, it contains anti-debugging and anti-VM logic, along with a UAC bypass [11].

A timeline outlining suspicious activity on the device alerted by Darktrace.
Figure 3: A timeline outlining suspicious activity on the device alerted by Darktrace.

Case Study 2

The second case involved a customer within the Education sector. The affected device was also internet-facing, with network traffic indicating it was a WSUS server

Suspicious activity in this case once again began on October 24, notably only a few seconds after initial signs of compromise were observed in the first case. Initial anomalous behaviour also closely aligned, with outbound PowerShell connections to webhook[.]site, and then later connections, including HTTP POSTs, to the same endpoint with a cURL user agent.

While Darktrace did not observe any anomalous network activity on the device after October 24, the customer’s security integration resulted in an additional alert on October 27 for malicious activity, suggesting that the compromise may have continued locally.

By leveraging Darktrace’s security integrations, customers can investigate activity across different sources in a seamless manner, gaining additional insight and context to an attack.

A timeline outlining suspicious activity on the device alerted by Darktrace.
Figure 4: A timeline outlining suspicious activity on the device alerted by Darktrace.

Conclusion

Exploitation of a CVE can lead to a wide range of outcomes. In some cases, it may be limited to just a single device with a focused objective, such as exfiltration of sensitive data. In others, it could lead to lateral movement and a full network compromise, including ransomware deployment. As the threat of internet-facing exploitation continues to grow, security teams must be prepared to defend against such a possibility, regardless of the attack type or scale.

By focussing on detection of anomalous behaviour rather than relying on signatures associated with a specific CVE exploit, Darktrace is able to alert on post-exploitation activity regardless of the kind of behaviour seen. In addition, leveraging security integrations provides further context on activities beyond the visibility of Darktrace / NETWORKTM, enabling defenders to investigate and respond to attacks more effectively.

With adversaries weaponizing even trusted incident response tools, maintaining broad visibility and rapid response capabilities becomes critical to mitigating post-exploitation risk.

Credit to Emma Foulger (Global Threat Research Operations Lead), Tara Gould (Threat Research Lead), Eugene Chua (Principal Cyber Analyst & Analyst Team Lead), Nathaniel Jones (VP, Security & AI Strategy, Field CISO),

Edited by Ryan Traill (Analyst Content Lead)

Appendices

References

1.        https://nvd.nist.gov/vuln/detail/CVE-2025-59287

2.    https://www.bleepingcomputer.com/news/security/hackers-now-exploiting-critical-windows-server-wsus-flaw-in-attacks/

3.    https://learn.microsoft.com/en-us/windows-server/administration/windows-server-update-services/get-started/windows-server-update-services-wsus

4.    https://www.cisa.gov/news-events/alerts/2025/10/24/microsoft-releases-out-band-security-update-mitigate-windows-server-update-service-vulnerability-cve

5.    https://msrc.microsoft.com/update-guide/vulnerability/CVE-2025-59287

6.    https://thehackernews.com/2025/10/microsoft-issues-emergency-patch-for.html

7.    https://www.cisa.gov/known-exploited-vulnerabilities-catalog

8.    https://www.huntress.com/blog/exploitation-of-windows-server-update-services-remote-code-execution-vulnerability

9.    https://unit42.paloaltonetworks.com/microsoft-cve-2025-59287/

10. https://blog.talosintelligence.com/velociraptor-leveraged-in-ransomware-attacks/

11. https://github.com/hackirby/skuld

Darktrace Model Detections

·       Device / New PowerShell User Agent

·       Anomalous Connection / Powershell to Rare External

·       Compromise / Possible Tunnelling to Bin Services

·       Compromise / High Priority Tunnelling to Bin Services

·       Anomalous Server Activity / New User Agent from Internet Facing System

·       Device / New User Agent

·       Device / Internet Facing Device with High Priority Alert

·       Anomalous Connection / Multiple HTTP POSTs to Rare Hostname

·       Anomalous Server Activity / Rare External from Server

·       Compromise / Agent Beacon (Long Period)

·       Device / Large Number of Model Alerts

·       Compromise / Agent Beacon (Medium Period)

·       Device / Long Agent Connection to New Endpoint

·       Compromise / Slow Beaconing Activity To External Rare

·       Security Integration / Low Severity Integration Detection

·       Antigena / Network / Significant Anomaly / Antigena Alerts Over Time Block

·       Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Server Block

·       Antigena / Network / External Threat / Antigena Suspicious Activity Block

·       Antigena / Network / Significant Anomaly / Antigena Significant Server Anomaly Block

List of Indicators of Compromise (IoCs)

IoC - Type - Description + Confidence

o   royal-boat-bf05.qgtxtebl.workers[.]dev – Hostname – Likely C2 Infrastructure

o   royal-boat-bf05.qgtxtebl.workers[.]dev/v3.msi - URI – Likely payload

o   chat.hcqhajfv.workers[.]dev – Hostname – Possible C2 Infrastructure

o   185.69.24[.]18 – IP address – Possible C2 Infrastructure

o   185.69.24[.]18/bin.msi - URI – Likely payload

o   185.69.24[.]18/singapure - URI – Likely payload

The content provided in this blog is published by Darktrace for general informational purposes only and reflects our understanding of cybersecurity topics, trends, incidents, and developments at the time of publication. While we strive to ensure accuracy and relevance, the information is provided “as is” without any representations or warranties, express or implied. Darktrace makes no guarantees regarding the completeness, accuracy, reliability, or timeliness of any information presented and expressly disclaims all warranties.

Nothing in this blog constitutes legal, technical, or professional advice, and readers should consult qualified professionals before acting on any information contained herein. Any references to third-party organizations, technologies, threat actors, or incidents are for informational purposes only and do not imply affiliation, endorsement, or recommendation.

Darktrace, its affiliates, employees, or agents shall not be held liable for any loss, damage, or harm arising from the use of or reliance on the information in this blog.

The cybersecurity landscape evolves rapidly, and blog content may become outdated or superseded. We reserve the right to update, modify, or remove any content

Continue reading
About the author
Emma Foulger
Global Threat Research Operations Lead

Blog

/

Proactive Security

/

October 24, 2025

Patch Smarter, Not Harder: Now Empowering Security Teams with Business-Aligned Threat Context Agents

Default blog imageDefault blog image

Most risk management programs remain anchored in enumeration: scanning every asset, cataloging every CVE, and drowning in lists that rarely translate into action. Despite expensive scanners, annual pen tests, and countless spreadsheets, prioritization still falters at two critical points.

Context gaps at the device level: It’s hard to know which vulnerabilities actually matter to your business given existing privileges, what software it runs, and what controls already reduce risk.

Business translation: Even when the technical priority is clear, justifying effort and spend in financial terms—especially across many affected devices—can delay action. Especially if it means halting other areas of the business that directly generate revenue.

The result is familiar: alert fatigue, “too many highs,” and remediation that trails behind the threat landscape. Darktrace / Proactive Exposure Management addresses this by pairing precise, endpoint‑level context with clear, financial insight so teams can prioritize confidently and mobilize faster.

A powerful combination: No-Telemetry Endpoint Agent + Cost-Benefit Analysis

Darktrace / Proactive Exposure Management now uniquely combines technical precision with business clarity in a single workflow.  With this release, Darktrace / Proactive Exposure Management delivers a more holistic approach, uniting technical context and financial insight to drive proactive risk reduction. The result is a single solution that helps security teams stay ahead of threats while reducing noise, delays, and complexity.

  • No-Telemetry Endpoint: Collects installed software data and maps it to known CVEs—without network traffic—providing device-level vulnerability context and operational relevance.
  • Cost-Benefit Analysis for Patching: Calculates ROI by comparing patching effort with potential exploit impact, factoring in headcount time, device count, patch difficulty, and automation availability.

Introducing the No-Telemetry Endpoint Agent

Darktrace’s new endpoint agent inventories installed software on devices and maps it to known CVEs without collecting network data so you can prioritize using real device context and available security controls.

By grounding vulnerability findings in the reality of each endpoint, including its software footprint and existing controls, teams can cut through generic severity scores and focus on what matters most. The agent is ideal for remote devices, BYOD-adjacent fleets, or environments standardizing on Darktrace, and is available without additional licensing cost.

Darktrace / Proactive Exposure Management user interface
Figure 1: Darktrace / Proactive Exposure Management user interface

Built-In Cost-Benefit Analysis for Patching

Security teams often know what needs fixing but stakeholders need to understand why now. Darktrace’s new cost-benefit calculator compares the total cost to patch against the potential cost of exploit, producing an ROI for the patch action that expresses security action in clear financial terms.

Inputs like engineer time, number of affected devices, patch difficulty, and automation availability are factored in automatically. The result is a business-aligned justification for every patching decision—helping teams secure buy-in, accelerate approvals, and move work forward with one-click ticketing, CSV export, or risk acceptance.

Darktrace / Proactive Exposure Management Cost Benefit Analysis
Figure 2: Darktrace / Proactive Exposure Management Cost Benefit Analysis

A Smarter, Faster Approach to Exposure Management

Together, the no-telemetry endpoint and Cost–Benefit Analysis advance the CTEM motion from theory to practice. You gain higher‑fidelity discovery and validation signals at the device level, paired with business‑ready justification that accelerates mobilization. The result is fewer distractions, clearer priorities, and faster measurable risk reduction. This is not from chasing every alert, but by focusing on what moves the needle now.

  • Smarter Prioritization: Device‑level context trims noise and spotlights the exposures that matter for your business.
  • Faster Decisions: Built‑in ROI turns technical urgency into executive clarity—speeding approvals and action.
  • Practical Execution: Privacy‑conscious endpoint collection and ticketing/export options fit neatly into existing workflows.
  • Better Outcomes: Close the loop faster—discover, prioritize, validate, and mobilize—on the same operating surface.

Committed to innovation

These updates are part of the broader Darktrace release, which also included:

1. Major innovations in cloud security with the launch of the industry’s first fully automated cloud forensics solution, reinforcing Darktrace’s leadership in AI-native security.

2. Darktrace Network Endpoint eXtended Telemetry (NEXT) is revolutionizing NDR with the industry’s first mixed-telemetry agent using Self-Learning AI.

3. Improvements to our OT product, purpose built for industrial infrastructure, Darktrace / OT now brings dedicated OT dashboard, segmentation-aware risk modeling, and expanded visibility into edge assets and automation protocols.

Join our Live Launch Event

When? 

December 9, 2025

What will be covered?

Join our live broadcast to experience how Darktrace is eliminating blind spots for detection and response across your complete enterprise with new innovations in Agentic AI across our ActiveAI Security platform. Industry leaders from IDC will join Darktrace customers to discuss challenges in cross-domain security, with a live walkthrough reshaping the future of Network Detection & Response, Endpoint Detection & Response, Email Security, and SecOps in novel threat detection and autonomous investigations.

Continue reading
About the author
Kelland Goodin
Product Marketing Specialist
Your data. Our AI.
Elevate your network security with Darktrace AI