Why St. Catharines Chose Darktrace for Digital Security
08
Aug 2022
Discover why St. Catharines partnered with Darktrace to secure their digital assets and protect against cyber threats.
The City of St. Catharines is the largest city in Ontario, Canada’s Niagara Region. We strive to meet the needs of our over 140,000 residents. Cyber disruption could stop our municipality from functioning, so having a strong security stack is critical to our mission.
Globally, 44% of ransomware attacks target municipalities. In Canada, smaller cities have had to deal with increased attempts by threat actors to access information, without significant increases in security staff or budgets.
Data breaches incur an average cost totaling $6.35 million CAD because of ransomware payments, fines for leaked personally identifiable information, or recovery costs. That number does not quantify the additional reputational damage, PR setbacks, and other repercussions. Instead of resigning ourselves to accepting a greater cyber-risk, we turned to Darktrace to protect our network, email, and Microsoft 365 Suite.
How Self-Learning AI buys back time
I’m sure we as a municipality are grappling with the same issues that other cities of a similar size face from a budgetary standpoint. We do not have enough boots on the ground and our IT team is stretched thin. Investigating cyber security incidents takes a lot of time. We must find correlations between several old systems and manually go through security event logs to determine which incidents require follow-up. These factors greatly increased our response time.
When we first implemented Darktrace, we immediately saw that it does all the heavy lifting for us when it comes to the analysis of breach events. The Cyber AI Analyst shows a granular breakdown of the digital traffic coming into and out of the City, all on a single screen. This helps us separate the meaningful data from the noise.
I now start all my investigations with the Cyber AI Analyst. It sets me up with actionable insights that ensure I focus my time and energy in the most productive ways.
Darktrace also saves my team time and labor when it comes to responding to incidents. When it does detect attacks, it autonomously responds in seconds to contain them without interfering with any normal business operations.
We have been able to configure Darktrace’s settings to further streamline our workload. We’ve made several adjustments that reduce the number of helpdesk tickets my team receives, which ensures we’re spending our time on high-value work.
Darktrace not only makes up for the limited resources of our IT team, but also augments us. By simplifying our investigations and autonomously stopping attacks, Darktrace gives us more time to work on our other IT responsibilities without worrying about our security.
Darktrace/Network brings visibility and defense
Before Darktrace, we didn’t have visibility into the east-west traffic on our network. Once installed, it provided a view of traffic we had never anticipated, and we saw connections that we never even knew existed.
Darktrace/Network has insight into every laptop, server, phone, and user. The Self-Learning AI learns the “pattern of life” of our organization, so that it can recognize unusual activity that indicates a cyber-attack. In the case of a serious emerging attack, Darktrace RESPOND can take precise actions to stop it while otherwise allowing normal digital operations.
Darktrace/Network maps connections made within our network, whether between users and servers or between devices. It sorts users into groups that behave similarly, making it more obvious if one acts unusually. Darktrace/Email and Darktrace/Apps extend this coverage to our email and Microsoft 365 Suite, respectively. In this way, Darktrace allows us to see comprehensively into end-user traffic.
Darktrace can stop attempts to download malicious software, move malware laterally, upload private data, and everything in between. This means we are protected from attacks that are notoriously difficult to find, such as stealth attacks, machine speed ransomwares, insider threats, and zero-days.
Darktrace brings peace of mind
The Self-Learning AI has transformed my skepticism of AI into enthusiasm. I now see the possibilities with AI are limited only by one’s imagination, and the Darktrace team has harnessed it to create a great security tool.
Darktrace has proven to be the addition we needed to keep our digital landscape secure while contending with the limitations of budget and staffing during a time of increasingly frequent attacks targeting municipalities. My team’s support for Darktrace has been outstanding, and we have no regrets.
Darktrace gives us the assurance that no matter what rules we put in place regarding the flow of traffic on our network, it will always be present to reconfigure our defenses and safeguard our digital assets should an attack occur. It works 24/7, at machine speed, and augments our IT team. That defines peace of mind!
Like this and want more?
Receive the latest blog in your inbox
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
Newsletter
Enjoying the blog?
Sign up to receive the latest news and insights from the Darktrace newsletter – delivered directly to your inbox
Thanks for signing up!
Look out for your first newsletter, coming soon.
Oops! Something went wrong while submitting the form.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Wayne Racey
Manager of IT Operations, City of St Catharines (Guest Contributor)
Bytesize Security: Insider Threats in Google Workspace
What is an insider threat?
An insider threat is a cyber risk originating from within an organization. These threats can involve actions such as an employee inadvertently clicking on a malicious link (e.g., a phishing email) or an employee with malicious intent conducting data exfiltration for corporate sabotage.
Insiders often exploit their knowledge and access to legitimate corporate tools, presenting a continuous risk to organizations. Defenders must protect their digital estate against threats from both within and outside the organization.
For example, in the summer of 2024, Darktrace / IDENTITY successfully detected a user in a customer environment attempting to steal sensitive data from a trusted Google Workspace service. Despite the use of a legitimate and compliant corporate tool, Darktrace identified anomalies in the user’s behavior that indicated malicious intent.
Attack overview: Insider threat
In June 2024, Darktrace detected unusual activity involving the Software-as-a-Service (SaaS) account of a former employee from a customer organization. This individual, who had recently left the company, was observed downloading a significant amount of data in the form of a “.INDD” file (an Adobe InDesign document typically used to create page layouts [1]) from Google Drive.
While the use of Google Drive and other Google Workspace platforms was not unexpected for this employee, Darktrace identified that the user had logged in from an unfamiliar and suspicious IPv6 address before initiating the download. This anomaly triggered a model alert in Darktrace / IDENTITY, flagging the activity as potentially malicious.
Following this detection, the customer reached out to Darktrace’s Security Operations Center (SOC) team via the Security Operations Support service for assistance in triaging and investigating the incident further. Darktrace’s SOC team conducted an in-depth investigation, enabling the customer to identify the exact moment of the file download, as well as the contents of the stolen documents. The customer later confirmed that the downloaded files contained sensitive corporate data, including customer details and payment information, likely intended for reuse or sharing with a new employer.
In this particular instance, Darktrace’s Autonomous Response capability was not active, allowing the malicious insider to successfully exfiltrate the files. If Autonomous Response had been enabled, Darktrace would have immediately acted upon detecting the login from an unusual (in this case 100% rare) location by logging out and disabling the SaaS user. This would have provided the customer with the necessary time to review the activity and verify whether the user was authorized to access their SaaS environments.
Conclusion
Insider threats pose a significant challenge for traditional security tools as they involve internal users who are expected to access SaaS platforms. These insiders have preexisting knowledge of the environment, sensitive data, and how to make their activities appear normal, as seen in this case with the use of Google Workspace. This familiarity allows them to avoid having to use more easily detectable intrusion methods like phishing campaigns.
Darktrace’s anomaly detection capabilities, which focus on identifying unusual activity rather than relying on specific rules and signatures, enable it to effectively detect deviations from a user’s expected behavior. For instance, an unusual login from a new location, as in this example, can be flagged even if the subsequent malicious activity appears innocuous due to the use of a trusted application like Google Drive.
Credit to Vivek Rajan (Cyber Analyst) and Ryan Traill (Analyst Content Lead)
Appendices
Darktrace Model Detections
SaaS / Resource::Unusual Download Of Externally Shared Google Workspace File
Reimagining Your SOC: How to Achieve Proactive Network Security
Introduction: Challenges and solutions to SOC efficiency
For Security Operation Centers (SOCs), reliance on signature or rule-based tools – solutions that are always chasing the latest update to prevent only what is already known – creates an excess of false positives. SOC analysts are therefore overwhelmed by a high volume of context-lacking alerts, with human analysts able to address only about 10% due to time and resource constraints. This forces many teams to accept the risks of addressing only a fraction of the alerts while novel threats go completely missed.
74% of practitioners are already grappling with the impact of an AI-powered threat landscape, which amplifies challenges like tool sprawl, alert fatigue, and burnout. Thus, achieving a resilient network, where SOC teams can spend most of their time getting proactive and stopping threats before they occur, feels like an unrealistic goal as attacks are growing more frequent.
Despite advancements in security technology (advanced detection systems with AI, XDR tools, SIEM aggregators, etc...), practitioners are still facing the same issues of inefficiency in their SOC, stopping them from becoming proactive. How can they select security solutions that help them achieve a proactive state without dedicating more human hours and resources to managing and triaging alerts, tuning rules, investigating false positives, and creating reports?
To overcome these obstacles, organizations must leverage security technology that is able to augment and support their teams. This can happen in the following ways:
Full visibility across the modern network expanding into hybrid environments
Have tools that identifies and stops novel threats autonomously, without causing downtime
Apply AI-led analysis to reduce time spent on manual triage and investigation
Your current solutions might be holding you back
Traditional cybersecurity point solutions are reliant on using global threat intelligence to pattern match, determine signatures, and consequently are chasing the latest update to prevent only what is known. This means that unknown threats will evade detection until a patient zero is identified. This legacy approach to threat detection means that at least one organization needs to be ‘patient zero’, or the first victim of a novel attack before it is formally identified.
Even the point solutions that claim to use AI to enhance threat detection rely on a combination of supervised machine learning, deep learning, and transformers to
train and inform their systems. This entails shipping your company’s data out to a large data lake housed somewhere in the cloud where it gets blended with attack data from thousands of other organizations. The resulting homogenized dataset gets used to train AI systems — yours and everyone else’s — to recognize patterns of attack based on previously encountered threats.
While using AI in this way reduces the workload of security teams who would traditionally input this data by hand, it emanates the same risk – namely, that AI systems trained on known threats cannot deal with the threats of tomorrow. Ultimately, it is the unknown threats that bring down an organization.
The promise and pitfalls of XDR in today's threat landscape
Enter Extended Detection and Response (XDR): a platform approach aimed at unifying threat detection across the digital environment. XDR was developed to address the limitations of traditional, fragmented tools by stitching together data across domains, providing SOC teams with a more cohesive, enterprise-wide view of threats. This unified approach allows for improved detection of suspicious activities that might otherwise be missed in siloed systems.
However, XDR solutions still face key challenges: they often depend heavily on human validation, which can aggravate the already alarmingly high alert fatigue security analysts experience, and they remain largely reactive, focusing on detecting and responding to threats rather than helping prevent them. Additionally, XDR frequently lacks full domain coverage, relying on EDR as a foundation and are insufficient in providing native NDR capabilities and visibility, leaving critical gaps that attackers can exploit. This is reflected in the current security market, with 57% of organizations reporting that they plan to integrate network security products into their current XDR toolset[1].
Why settling is risky and how to unlock SOC efficiency
The result of these shortcomings within the security solutions market is an acceptance of inevitable risk. From false positives driving the barrage of alerts, to the siloed tooling that requires manual integration, and the lack of multi-domain visibility requiring human intervention for business context, security teams have accepted that not all alerts can be triaged or investigated.
While prioritization and processes have improved, the SOC is operating under a model that is overrun with alerts that lack context, meaning that not all of them can be investigated because there is simply too much for humans to parse through. Thus, teams accept the risk of leaving many alerts uninvestigated, rather than finding a solution to eliminate that risk altogether.
Darktrace / NETWORK is designed for your Security Operations Center to eliminate alert triage with AI-led investigations , and rapidly detect and respond to known and unknown threats. This includes the ability to scale into other environments in your infrastructure including cloud, OT, and more.
Beyond global threat intelligence: Self-Learning AI enables novel threat detection & response
Darktrace does not rely on known malware signatures, external threat intelligence, historical attack data, nor does it rely on threat trained machine learning to identify threats.
Darktrace’s unique Self-learning AI deeply understands your business environment by analyzing trillions of real-time events that understands your normal ‘pattern of life’, unique to your business. By connecting isolated incidents across your business, including third party alerts and telemetry, Darktrace / NETWORK uses anomaly chains to identify deviations from normal activity.
The benefit to this is that when we are not predefining what we are looking for, we can spot new threats, allowing end users to identify both known threats and subtle, never-before-seen indicators of malicious activity that traditional solutions may miss if they are only looking at historical attack data.
AI-led investigations empower your SOC to prioritize what matters
Anomaly detection is often criticized for yielding high false positives, as it flags deviations from expected patterns that may not necessarily indicate a real threat or issues. However, Darktrace applies an investigation engine to automate alert triage and address alert fatigue.
Darktrace’s Cyber AI Analyst revolutionizes security operations by conducting continuous, full investigations across Darktrace and third-party alerts, transforming the alert triage process. Instead of addressing only a fraction of the thousands of daily alerts, Cyber AI Analyst automatically investigates every relevant alert, freeing up your team to focus on high-priority incidents and close security gaps.
Powered by advanced machine-learning techniques, including unsupervised learning, models trained by expert analysts, and tailored security language models, Cyber AI Analyst emulates human investigation skills, testing hypotheses, analyzing data, and drawing conclusions. According to Darktrace Internal Research, Cyber AI Analyst typically provides a SOC with up to 50,000 additional hours of Level 2 analysis and written reporting annually, enriching security operations by producing high level incident alerts with full details so that human analysts can focus on Level 3 tasks.
Containing threats with Autonomous Response
Simply quarantining a device is rarely the best course of action - organizations need to be able to maintain normal operations in the face of threats and choose the right course of action. Different organizations also require tailored response functions because they have different standards and protocols across a variety of unique devices. Ultimately, a ‘one size fits all’ approach to automated response actions puts organizations at risk of disrupting business operations.
Darktrace’s Autonomous Response tailors its actions to contain abnormal behavior across users and digital assets by understanding what is normal and stopping only what is not. Unlike blanket quarantines, it delivers a bespoke approach, blocking malicious activities that deviate from regular patterns while ensuring legitimate business operations remain uninterrupted.
Darktrace offers fully customizable response actions, seamlessly integrating with your workflows through hundreds of native integrations and an open API. It eliminates the need for costly development, natively disarming threats in seconds while extending capabilities with third-party tools like firewalls, EDR, SOAR, and ITSM solutions.
Unlocking a proactive state of security
Securing the network isn’t just about responding to incidents — it’s about being proactive, adaptive, and prepared for the unexpected. The NIST Cybersecurity Framework (CSF 2.0) emphasizes this by highlighting the need for focused risk management, continuous incident response (IR) refinement, and seamless integration of these processes with your detection and response capabilities.
Despite advancements in security technology, achieving a proactive posture is still a challenge to overcome because SOC teams face inefficiencies from reliance on pattern-matching tools, which generate excessive false positives and leave many alerts unaddressed, while novel threats go undetected. If SOC teams are spending all their time investigating alerts then there is no time spent getting ahead of attacks.
Achieving proactive network resilience — a state where organizations can confidently address challenges at every stage of their security posture — requires strategically aligned solutions that work seamlessly together across the attack lifecycle.
References
1. Market Guide for Extended Detection and Response, Gartner, 17thAugust 2023 - ID G00761828