Blog
/
/
June 24, 2020

Ekans Ransomware: Insights on OT Cyber Attacks

Uncover the impacts of the Ekans ransomware attack on operational technology and what organizations can do to enhance their cybersecurity posture.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
David Masson
VP, Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
24
Jun 2020

In recent weeks, the security industry has become acutely aware of the challenges surrounding OT protection, with the EKANS ransomware attacks on Honda and the Enel Group demonstrating how novel threats continue to slip through the cracks of security systems in ICS environments. What’s more, with such attacks resulting in loss of productivity and damage to critical infrastructure, the need for a cyber security strategy that bridges both OT and IT technology is increasingly urgent.

The recent EKANS ransomware has been making waves in security circles because of its ability to target 64 specific ICS mechanisms in its ‘kill chain’. Standard attacks target ICS environments through vulnerabilities in IT infrastructure, pivoting through unpatched software to reach OT machinery, rather than heading straight for the jugular. The EKANS ransomware targeted ICS vulnerabilities directly and can be considered the first of its kind – marking a significant evolution in attacker techniques. Before now, ICS machinery-specific ransomware had either been an academic theory or a marketing tool.

Technical analysis

Written in the Go programming language, EKANS has additional obfuscation abilities compared to other ransomware strains, which enable it to better evade detection. As will be seen in this analysis, the power of EKANS ransomware is two-fold – it is able to disguise its attack in the beginning stages, and when it does strike, it is targeted at industrial pain points.

The ransomware’s first port of call is to check if the victim has already been encrypted. If not, standard encryption library functions ensue. These involve both the execution of encryption operations and the deletion of Volume Shadow Copy back-ups – meaning the victim cannot simply retrieve duplicated data copies and circumvent the ransom.

Before the relevant files are encrypted, EKANS ransomware kills various ICS processes listed in a pre-programmed, hard-coded list. The affected applications include GE’s Proficy data historian, GE Fanuc automation software, FLEXNet licensing server instance, Thingworx monitoring and management software, and Honeywell’s HMIWeb application – all specific to ICS environments.

proficyclient.exe
vmacthlp.exe
msdtssrvr.exe
sqlservr.exe
msmdsrv.exe
reportingservicesservice.exe
dsmcsvc.exe
winvnc4.exe
client.exe
collwrap.exe
bluestripecollector.exe

Figure 1: A small excerpt of the ICS-related processes targeted in the EKANS ‘kill list’

While stalling these processes doesn’t necessarily bring industrial plants crashing to a halt, it does reduce visibility and potentially make machine operations unpredictable. In the case of Honda’s attack, manufacturing operations across the US, the UK, and Turkey were suspended. With a workforce of 220,000 people worldwide, shutting down several factories and sending employees home results in a dramatic loss of production hours and employee salaries – not to mention the costs of getting systems up and running without giving in to ransom demands.

EKANS then goes one stage further. Once this initial kill chain has been executed, the ransomware starts encrypting data. Five randomly generated letters are added at the end of each original file extension. This in itself is unusual, as most ransomware encrypts data with a specific key.

Figure 2: Encryption results of EKANS ransomware

Rather than targeting specific devices or systems, EKANS ransomware looks to take down the entire network, which is part of what makes it such an aggressive style of ransomware. However, it lacks a self-propagating mechanism, so it has to be manually introduced to ICS environments. Malicious payloads hidden in links and attachments within emails are the primary mechanism used to introduce the ransomware. From there, EKANS exploits vulnerable and unpatched services, seeding itself across the entire business via script.

When the encryption process has been completed, a ransom note is displayed, requesting a covert financial exchange for a decryption key over the encrypted email platform CTemplar. In the case of both Honda and the Enel Group, they were told to contact CarrolBidell@tutanota[.]com for further information. The attackers also offered to send several decrypted files to prove the legitimacy of the encryption key.

| What happened to your files?
--------------------------------------------
We breached your corporate network and encrypted the data on your computers. The encrypted data includes documents, databases, photos and more –
all were encrypted using a military grade encryption algorithms (AES-256 and RSA-2048). You cannot access those files right now. But dont worry!
You can still get those files back and be up and running again in no time.
--------------------------------------------
| How to contact us to get your files back?
--------------------------------------------
The only way to restore your files is by purchasing a decryption tool loaded with a private key we created specifically for your network.
Once run on an effected computer, the tool will decrypt all encrypted files – and you resume day-to-day operations, preferably with
better cyber security in mind. If you are interested in purchasing the decryption tool contact us at %s
--------------------------------------------
| How can you be certain we have the decryption tool?
--------------------------------------------
In your mail to us attach up to 3 files (up to 3MB, no databases or spreadsheets).

Figure 3: Partial view of EKANS ransomware note

Honda has refrained from stating what specific plant capabilities were affected by the EKANS attack, however it has publicly affirmed that production operations have been affected in multiple factories across the world. Their visibility and control systems were disrupted significantly enough to suspend manufacturing.

Becoming immune to ransomware

While the EKANS ransomware leverages fairly crude techniques and is only able to halt processes rather than control ICS mechanisms, it represents a new frontier in OT cyber-attacks. ICS offensives will continue to evolve – with greater control over machinery a likely avenue of exploration for cyber-criminals.

What is clear from the Honda attack is that even some of the world’s largest global conglomerates are susceptible to these kind of ransomware attacks. What is needed to protect factory floors from such attacks is a cyber security solution that can detect the most subtle signals of threat, learning on the job to understand what is ‘normal’ for each unique ICS environment.

Darktrace’s AI learns the normal ‘patterns of life’ for every user, device, and controller across both OT and IT. By continuously analyzing data across organizations’ systems, the AI’s unique understanding of how each facet of a business and a dynamic workforce interacts ensures that any malicious activity is detected seconds after it emerges. In the case of EKANS, this self-learning approach would have identified a number of anomalous behaviors pertaining to the originally infected device, including beaconing to a rare destination and the unusual connections to encryption software.

Complementing Darktrace’s threat detection is the AI’s Autonomous Response abilities, which neutralize threats with surgical precision – allowing business activity to continue as normal. Autonomous Response has already proven itself successful in stopping ransomware attacks, preventing damaging operational outages at manufacturing facilities, hospitals, and municipalities around the world.

Conclusion

EKANS revealed that attackers are beginning to successfully target both IT and OT systems with one attack, making the need for security programs that can bridge this gap more urgent than ever. The ability to defend both environments with a single security solution ensures holistic protection for the entire organization. By correlating disparate data points across SaaS, email, cloud, traditional network, and OT environments, Cyber AI can identify and stop even the most sophisticated attacks.

The reality is that threats in the OT sphere will continue to evolve, becoming faster and more furious than ever. Given the potential damage ransomware can cause, security that can defend industrial systems along with dynamic workforces – detecting and stopping fast-acting threats across a complex business – has become more important than ever. The functionality of industrial systems depends on it.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
David Masson
VP, Field CISO

More in this series

No items found.

Blog

/

Network

/

November 26, 2025

CastleLoader & CastleRAT: Behind TAG150’s Modular Malware Delivery System

CastleLoader & CastleRAT: Behind TAG150’s Modular Malware Delivery SystemDefault blog imageDefault blog image

What is TAG-150?

TAG-150, a relatively new Malware-as-a-Service (MaaS) operator, has been active since March 2025, demonstrating rapid development and an expansive, evolving infrastructure designed to support its malicious operations. The group employs two custom malware families, CastleLoader and CastleRAT, to compromise target systems, with a primary focus on the United States [1]. TAG-150’s infrastructure included numerous victim-facing components, such as IP addresses and domains functioning as command-and-control (C2) servers associated with malware families like SecTopRAT and WarmCookie, in addition to CastleLoader and CastleRAT [2].

As of May 2025, CastleLoader alone had infected a reported 469 devices, underscoring the scale and sophistication of TAG-150’s campaign [1].

What are CastleLoader and CastleRAT?

CastleLoader is a loader malware, primarily designed to download and install additional malware, enabling chain infections across compromised systems [3]. TAG-150 employs a technique known as ClickFix, which uses deceptive domains that mimic document verification systems or browser update notifications to trick victims into executing malicious scripts. Furthermore, CastleLoader leverages fake GitHub repositories that impersonate legitimate tools as a distribution method, luring unsuspecting users into downloading and installing malware on their devices [4].

CastleRAT, meanwhile, is a remote access trojan (RAT) that serves as one of the primary payloads delivered by CastleLoader. Once deployed, CastleRAT grants attackers extensive control over the compromised system, enabling capabilities such as keylogging, screen capturing, and remote shell access.

TAG-150 leverages CastleLoader as its initial delivery mechanism, with CastleRAT acting as the main payload. This two-stage attack strategy enhances the resilience and effectiveness of their operations by separating the initial infection vector from the final payload deployment.

How are they deployed?

Castleloader uses code-obfuscation methods such as dead-code insertion and packing to hinder both static and dynamic analysis. After the payload is unpacked, it connects to its command-and-control server to retrieve and running additional, targeted components.

Its modular architecture enables it to function both as a delivery mechanism and a staging utility, allowing threat actors to decouple the initial infection from payload deployment. CastleLoader typically delivers its payloads as Portable Executables (PEs) containing embedded shellcode. This shellcode activates the loader’s core module, which then connects to the C2 server to retrieve and execute the next-stage malware.[6]

Following this, attackers deploy the ClickFix technique, impersonating legitimate software distribution platforms like Google Meet or browser update notifications. These deceptive sites trick victims into copying and executing PowerShell commands, thereby initiating the infection kill chain. [1]

When a user clicks on a spoofed Cloudflare “Verification Stepprompt, a background request is sent to a PHP script on the distribution domain (e.g., /s.php?an=0). The server’s response is then automatically copied to the user’s clipboard using the ‘unsecuredCopyToClipboard()’ function. [7].

The Python-based variant of CastleRAT, known as “PyNightShade,” has been engineered with stealth in mind, showing minimal detection across antivirus platforms [2]. As illustrated in Figure 1, PyNightShade communicates with the geolocation API service ip-api[.]com, demonstrating both request and response behavior

Packet Capture (PCAP) of PyNightShade, the Python-based variant of CastleRAT, communicating with the geolocation API service ip-api[.]com.
Figure 1: Packet Capture (PCAP) of PyNightShade, the Python-based variant of CastleRAT, communicating with the geolocation API service ip-api[.]com.

Darktrace Coverage

In mid-2025, Darktrace observed a range of anomalous activities across its customer base that appeared linked to CastleLoader, including the example below from a US based organization.

The activity began on June 26, when a device on the customer’s network was observed connecting to the IP address 173.44.141[.]89, a previously unseen IP for this network along with the use of multiple user agents, which was also rare for the user.  It was later determined that the IP address was a known indicator of compromise (IoC) associated with TAG-150’s CastleRAT and CastleLoader operations [2][5].

Figure 2: Darktrace’s detection of a device making unusual connections to the malicious endpoint 173.44.141[.]89.

The device was observed downloading two scripts from this endpoint, namely ‘/service/download/data_5x.bin’ and ‘/service/download/data_6x.bin’, which have both been linked to CastleLoader infections by open-source intelligence (OSINT) [8]. The archives contains embedded shellcode, which enables attackers to execute arbitrary code directly in memory, bypassing disk writes and making detection by endpoint detection and response (EDR) tools significantly more difficult [2].

 Darktrace’s detection of two scripts from the malicious endpoint.
Figure 3: Darktrace’s detection of two scripts from the malicious endpoint.

In addition to this, the affected device exhibited a high volume of internal connections to a broad range of endpoints, indicating potential scanning activity. Such behavior is often associated with reconnaissance efforts aimed at mapping internal infrastructure.

Darktrace / NETWORK correlated these behaviors and generated an Enhanced Monitoring model, a high-fidelity security model designed to detect activity consistent with the early stages of an attack. These high-priority models are continuously monitored and triaged by Darktrace’s Security Operations Center (SOC) as part of the Managed Threat Detection and Managed Detection & Response services, ensuring that subscribed customers are promptly alerted to emerging threats.

Darktrace detected an unusual ZIP file download alongside the anomalous script, followed by internal connectivity. This activity was correlated under an Enhanced Monitoring model.
Figure 4: Darktrace detected an unusual ZIP file download alongside the anomalous script, followed by internal connectivity. This activity was correlated under an Enhanced Monitoring model.

Darktrace Autonomous Response

Fortunately, Darktrace’s Autonomous Response capability was fully configured, enabling it to take immediate action against the offending device by blocking any further connections external to the malicious endpoint, 173.44.141[.]89. Additionally, Darktrace enforced a ‘group pattern of life’ on the device, restricting its behavior to match other devices in its peer group, ensuring it could not deviate from expected activity, while also blocking connections over 443, shutting down any unwanted internal scanning.

Figure 5: Actions performed by Darktrace’s Autonomous Response to contain the ongoing attack.

Conclusion

The rise of the MaaS ecosystem, coupled with attackers’ growing ability to customize tools and techniques for specific targets, is making intrusion prevention increasingly challenging for security teams. Many threat actors now leverage modular toolkits, dynamic infrastructure, and tailored payloads to evade static defenses and exploit even minor visibility gaps. In this instance, Darktrace demonstrated its capability to counter these evolving tactics by identifying early-stage attack chain behaviors such as network scanning and the initial infection attempt. Autonomous Response then blocked the CastleLoader IP delivering the malicious ZIP payload, halting the attack before escalation and protecting the organization from a potentially damaging multi-stage compromise

Credit to Ahmed Gardezi (Cyber Analyst) Tyler Rhea (Senior Cyber Analyst)
Edited by Ryan Traill (Analyst Content Lead)

Appendices

Darktrace Model Detections

  • Anomalous Connection / Unusual Internal Connections
  • Anomalous File / Zip or Gzip from Rare External Location
  • Anomalous File / Script from Rare External Location
  • Initial Attack Chain Activity (Enhanced Monitoring Model)

MITRE ATT&CK Mapping

  • T15588.001 - Resource Development – Malware
  • TG1599 – Defence Evasion – Network Boundary Bridging
  • T1046 – Discovery – Network Service Scanning
  • T1189 – Initial Access

List of IoCs
IoC - Type - Description + Confidence

  • 173.44.141[.]89 – IP – CastleLoader C2 Infrastructure
  • 173.44.141[.]89/service/download/data_5x.bin – URI – CastleLoader Script
  • 173.44.141[.]89/service/download/data_6x.bin – URI  - CastleLoader Script
  • wsc.zip – ZIP file – Possible Payload

References

[1] - https://blog.polyswarm.io/castleloader

[2] - https://www.recordedfuture.com/research/from-castleloader-to-castlerat-tag-150-advances-operations

[3] - https://www.pcrisk.com/removal-guides/34160-castleloader-malware

[4] - https://www.scworld.com/brief/malware-loader-castleloader-targets-devices-via-fake-github-clickfix-phishing

[5] https://www.virustotal.com/gui/ip-address/173.44.141.89/community

[6] https://thehackernews.com/2025/07/castleloader-malware-infects-469.html

[7] https://www.cryptika.com/new-castleloader-attack-using-cloudflare-themed-clickfix-technique-to-infect-windows-computers/

[8] https://www.cryptika.com/castlebot-malware-as-a-service-deploys-range-of-payloads-linked-to-ransomware-attacks/

Continue reading
About the author

Blog

/

OT

/

November 20, 2025

Managing OT Remote Access with Zero Trust Control & AI Driven Detection

managing OT remote access with zero trust control and ai driven detectionDefault blog imageDefault blog image

The shift toward IT-OT convergence

Recently, industrial environments have become more connected and dependent on external collaboration. As a result, truly air-gapped OT systems have become less of a reality, especially when working with OEM-managed assets, legacy equipment requiring remote diagnostics, or third-party integrators who routinely connect in.

This convergence, whether it’s driven by digital transformation mandates or operational efficiency goals, are making OT environments more connected, more automated, and more intertwined with IT systems. While this convergence opens new possibilities, it also exposes the environment to risks that traditional OT architectures were never designed to withstand.

The modernization gap and why visibility alone isn’t enough

The push toward modernization has introduced new technology into industrial environments, creating convergence between IT and OT environments, and resulting in a lack of visibility. However, regaining that visibility is just a starting point. Visibility only tells you what is connected, not how access should be governed. And this is where the divide between IT and OT becomes unavoidable.

Security strategies that work well in IT often fall short in OT, where even small missteps can lead to environmental risk, safety incidents, or costly disruptions. Add in mounting regulatory pressure to enforce secure access, enforce segmentation, and demonstrate accountability, and it becomes clear: visibility alone is no longer sufficient. What industrial environments need now is precision. They need control. And they need to implement both without interrupting operations. All this requires identity-based access controls, real-time session oversight, and continuous behavioral detection.

The risk of unmonitored remote access

This risk becomes most evident during critical moments, such as when an OEM needs urgent access to troubleshoot a malfunctioning asset.

Under that time pressure, access is often provisioned quickly with minimal verification, bypassing established processes. Once inside, there’s little to no real-time oversight of user actions whether they’re executing commands, changing configurations, or moving laterally across the network. These actions typically go unlogged or unnoticed until something breaks. At that point, teams are stuck piecing together fragmented logs or post-incident forensics, with no clear line of accountability.  

In environments where uptime is critical and safety is non-negotiable, this level of uncertainty simply isn’t sustainable.

The visibility gap: Who’s doing what, and when?

The fundamental issue we encounter is the disconnect between who has access and what they are doing with it.  

Traditional access management tools may validate credentials and restrict entry points, but they rarely provide real-time visibility into in-session activity. Even fewer can distinguish between expected vendor behavior and subtle signs of compromise, misuse or misconfiguration.  

As a result, OT and security teams are often left blind to the most critical part of the puzzle, intent and behavior.

Closing the gaps with zero trust controls and AI‑driven detection

Managing remote access in OT is no longer just about granting a connection, it’s about enforcing strict access parameters while continuously monitoring for abnormal behavior. This requires a two-pronged approach: precision access control, and intelligent, real-time detection.

Zero Trust access controls provide the foundation. By enforcing identity-based, just-in-time permissions, OT environments can ensure that vendors and remote users only access the systems they’re explicitly authorized to interact with, and only for the time they need. These controls should be granular enough to limit access down to specific devices, commands, or functions. By applying these principles consistently across the Purdue Model, organizations can eliminate reliance on catch-all VPN tunnels, jump servers, and brittle firewall exceptions that expose the environment to excess risk.

Access control is only one part of the equation

Darktrace / OT complements zero trust controls with continuous, AI-driven behavioral detection. Rather than relying on static rules or pre-defined signatures, Darktrace uses Self-Learning AI to build a live, evolving understanding of what’s “normal” in the environment, across every device, protocol, and user. This enables real-time detection of subtle misconfigurations, credential misuse, or lateral movement as they happen, not after the fact.

By correlating user identity and session activity with behavioral analytics, Darktrace gives organizations the full picture: who accessed which system, what actions they performed, how those actions compared to historical norms, and whether any deviations occurred. It eliminates guesswork around remote access sessions and replaces it with clear, contextual insight.

Importantly, Darktrace distinguishes between operational noise and true cyber-relevant anomalies. Unlike other tools that lump everything, from CVE alerts to routine activity, into a single stream, Darktrace separates legitimate remote access behavior from potential misuse or abuse. This means organizations can both audit access from a compliance standpoint and be confident that if a session is ever exploited, the misuse will be surfaced as a high-fidelity, cyber-relevant alert. This approach serves as a compensating control, ensuring that even if access is overextended or misused, the behavior is still visible and actionable.

If a session deviates from learned baselines, such as an unusual command sequence, new lateral movement path, or activity outside of scheduled hours, Darktrace can flag it immediately. These insights can be used to trigger manual investigation or automated enforcement actions, such as access revocation or session isolation, depending on policy.

This layered approach enables real-time decision-making, supports uninterrupted operations, and delivers complete accountability for all remote activity, without slowing down critical work or disrupting industrial workflows.

Where Zero Trust Access Meets AI‑Driven Oversight:

  • Granular Access Enforcement: Role-based, just-in-time access that aligns with Zero Trust principles and meets compliance expectations.
  • Context-Enriched Threat Detection: Self-Learning AI detects anomalous OT behavior in real time and ties threats to access events and user activity.
  • Automated Session Oversight: Behavioral anomalies can trigger alerting or automated controls, reducing time-to-contain while preserving uptime.
  • Full Visibility Across Purdue Layers: Correlated data connects remote access events with device-level behavior, spanning IT and OT layers.
  • Scalable, Passive Monitoring: Passive behavioral learning enables coverage across legacy systems and air-gapped environments, no signatures, agents, or intrusive scans required.

Complete security without compromise

We no longer have to choose between operational agility and security control, or between visibility and simplicity. A Zero Trust approach, reinforced by real-time AI detection, enables secure remote access that is both permission-aware and behavior-aware, tailored to the realities of industrial operations and scalable across diverse environments.

Because when it comes to protecting critical infrastructure, access without detection is a risk and detection without access control is incomplete.

Continue reading
About the author
Pallavi Singh
Product Marketing Manager, OT Security & Compliance
Your data. Our AI.
Elevate your network security with Darktrace AI