Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Roberto Romeu
Senior SOC Analyst
Share
13
Oct 2023
Nationally Targeted Cyber Attacks
As the digital world becomes more and more interconnected, the threat of cyber-attacks transcends borders and presents a significant concern to security teams worldwide. Yet despite this, some malicious actors have shown a tendency to focus their attacks on specific countries. By employing highly tailored tactics, techniques, and procedures (TTPs) to target users and organizations from one nation, rather than launching more widespread campaigns, threat actors are able to maximize the efficiency and efficacy of their attacks.
What is Guildma and how does it work?
One example can be seen in the remote access trojan (RAT) and information stealer, Guildma. Guildma, also known by the demonic moniker, Astaroth, first appeared in the wild in 2017 and is a Latin America-based banking trojan known to primarily target organizations in Brazil, although has more recently been observed in North America and Europe too [1].
By concentrating their efforts on Brazil, Guildma is able to launch attacks with a high degree of specificity, focussing their language on Brazilian norms, referencing Brazilian institutions, and tailoring their social engineering accordingly. Moreover, considering that Brazilian customers likely represent a relatively small portion of security vendors’ clientele, there may be a limited pool of available indicators of compromise (IoCs). This limitation could significantly impact the efficacy of traditional security measures that rely on signature-based detection methods in identifying emerging threats.
Darktrace vs. Guildma
In June 2023, Darktrace observed a Guildma compromise on the network of a Brazilian customer in the manufacturing sector. The anomaly-based detection capabilities of Darktrace DETECT™ allowed it to identify suspicious activity surrounding the compromise, agnostic of any IoCs or specific signatures of a threat actor. Following the successful detection of the malware, the Darktrace Security Operations Center (SOC) carried out a thorough investigation into the compromise and brought it to the attention of the customer’s security team, allowing them to quickly react and prevent any further escalation.
This early detection by Darktrace effectively shut down Guildma operations on the network before any sensitive data could be gathered and stolen by malicious actors.
Attack Overview
In the case of the Guildma RAT detected by Darktrace, the affected system was a desktop device, ostensibly used by one employee. The desktop was first observed on the customer’s network in April 2023; however, it is possible that the initial compromise took place before Darktrace had visibility over the network. Guildma compromises typically start with phishing campaigns, indicating that the initial intrusion in this case likely occurred beyond the scope of Darktrace’s monitoring [2].
Early indicators
On June 23, 2023, Darktrace DETECT observed the first instance of unusual activity being performed by the affected desktop device, namely regular HTTP POST requests to a suspicious domain, indicative of command-and-control (C2) beaconing activity. The domain used an unusual Top-Level Domain (TLD), with a plausibly meaningful (in Portuguese) second-level domain and a seemingly random 11-character third-level domain, “dn00x1o0f0h.puxaofolesanfoneiro[.]quest”.
Throughout the course of this attack, Darktrace observed additional connections like this, representing something of a signature of the attack. The suspicious domains were typically registered within six months of observation, featured an uncommon TLD, and included a seemingly randomized third-level domain of 6-11 characters, followed by a plausibly legitimate second-level domain with a minimum of 15 characters. The connections to these unusual endpoints all followed a similar two-hour beaconing period, suggesting that Guildma may rotate its C2 infrastructure, using the Multi-Stage Channels TTP (MITRE ID T1104) to evade restrictions by firewalls or other signature-based security tools that rely on static lists of IoCs and “known bads”.
Figure 1: Model Breach Event Log for the “Compromise / Agent Beacon (Long Period)”. The connections at two-hour intervals, including at unreasonably late hours, is consistent with beaconing for C2.
Living-off-the-land with BITS abuse
A week later, on June 30, 2023, the affected device was observed making an unusual Microsoft BITS connection. BitsAdmin is a deprecated administrative tool available on most Windows devices and can be leveraged by attackers to transfer malicious obfuscated payloads into and around an organization’s network. The domain observed during this connection, "cwiufv.pratkabelhaemelentmarta[.]shop”, follows the previously outlined domain naming convention. Multiple open-source intelligence (OSINT) sources indicated that the endpoint had links to malware and, when visited, redirected users to the Brazilian versions of WhatsApp and Zoom. This is likely a tactic employed by threat actors to ensure users are unaware of suspicious domains, and subsequent malware downloads, by redirected them to a trusted source.
Figure 2: A screenshot of the Model Breach log summary of the “Unusual BITS Activity” model breach. The breach log contains key details such as the ASN, hostname, and user agent used in the breaching connection.
Obfuscated Tooling Downloads
Within one minute of the suspicious BITS activity, Darktrace detected the device downloading a suspicious file from the aforementioned endpoint, (cwiufv.pratkabelhaemelentmarta[.]shop). The file in question appeared to be a ZIP file with the 17-digit numeric name query, namely “?37627343830628786”, with the filename “zodzXLWwaV.zip”.
However, Darktrace DETECT recognized that the file extension did not match its true file type and identified that it was, in fact, an executable (.exe) file masquerading as a ZIP file. By masquerading files downloads, threat actors are able to make their malicious files seem legitimate and benign to security teams and traditional security tools, thereby evading detection. In this case, the suspicious file in question was indeed identified as malicious by multiple OSINT sources.
Following the initial download of this masqueraded file, Darktrace also detected subsequent downloads of additional executable files from the same endpoint. It is possible that these downloads represented Guildma actors attempting to download additional tooling, including the information-stealer widely known as Astaroth, in order to begin its data collection and exfiltration operations.
Figure 3: A screenshot of a graph produced by the Threat Visualizer of the affected device's external connections. The visual aid marks breaches with red and orange dots, creating a more intuitive explanation of observed behavior.
Darktrace SOC
The successful detection of the masqueraded file transfer triggered an Enhanced Monitoring model breach, a high-fidelity model designed to detect activity that is more likely indicative of an ongoing compromise.
This breach was immediately escalated to the Darktrace SOC for analysis by Darktrace’s team of expert analysts who were able to complete a thorough investigation and notify the customer’s security team of the compromise in just over half an hour. The investigation carried out by Darktrace’s analysts confirmed that the activity was, indeed, malicious, and provided the customer’s security team with details around the extent of the compromise, the specific IoCs, and risks this compromise posed to their digital environment. This information empowered the customer’s security team to promptly address the issue, having a significant portion of the investigative burden reduced and resolved by the round-the-clock Darktrace analyst team.
In addition to this, Cyber AI Analyst™ launched an investigation into the ongoing compromise and was able to connect the anomalous HTTP connections to the subsequent suspicious file downloads, viewing them as one incident rather than two isolated events. AI Analyst completed its investigation in just three minutes, upon which it provided a detailed summary of events of the activity, further aiding the customer’s remediation process.
Figure 4: CyberAI Analyst summary of the suspicious activity. A prose summary of the breach activity and the meaning of the technical details is included to maintain an easily digestible stream of information.
Conclusion
While the combination of TTPs observed in this Guildma RAT compromise is not uncommon globally, the specificity to targeting organizations in Brazil allows it to be incredibly effective. By focussing on just one country, malicious actors are able to launch highly specialized attacks, adapting the language used and tailoring the social engineering effectively to achieve maximum success. Moreover, as Brazil likely represents a smaller segment of security vendors’ customers, therefore leading to a limited pool of IoCs, attackers are often able to evade traditional signature-based detections.
Darktrace DETECT’s anomaly-based approach to threat detection allows for effective detection, mitigation, and response to emerging threats, regardless of the specifics of the attack and without relying on threat intelligence or previous IoCs. Ultimately in this case, Darktrace was able to identify the suspicious activity surrounding the Guildma compromise and swiftly bring it to the attention of the customer’s security team, before any data gathering, or exfiltration activity took place.
Darktrace’s threat detection capabilities coupled with its expert analyst team and round-the-clock SOC response is a highly effective addition to an organization’s defense-in-depth, whether in Brazil or anywhere else around the world.
Credit to Roberto Romeu, Senior SOC Analyst, Taylor Breland, Analyst Team Lead, San Francisco
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Darktrace researchers observed threat actors exploiting reports of Venezuelan President Maduro’s arrest to deliver backdoor malware. Attackers often use ongoing world events make their malicious content appear more credible, increasingly the likelihood of a successful attack.
Under Medusa’s Gaze: How Darktrace Uncovers RMM Abuse in Ransomware Campaigns
Medusa ransomware increasingly exploits remote monitoring and management (RMM) tools for persistence, lateral movement, and data exfiltration. This blog explores Medusa’s tactics, real-world detections, and how anomaly-based solutions with Autonomous Response can stop attacks.
React2Shell: How Opportunist Attackers Exploited CVE-2025-55182 Within Hours
Darktrace observed opportunistic exploitation of the React2Shell vulnerability within minutes of honeypot deployment. Attackers leveraged shell scripts, HTTP beaconing, and cryptomining activity, highlighting rapid adaptation to unpatched flaws.
Threat actors frequently exploit ongoing world events to trick users into opening and executing malicious files. Darktrace security researchers recently identified a threat group using reports around the arrest of Venezuelan President Nicolàs Maduro on January 3, 2025, as a lure to deliver backdoor malware.
Technical Analysis
While the exact initial access method is unknown, it is likely that a spear-phishing email was sent to victims, containing a zip archive titled “US now deciding what’s next for Venezuela.zip”. This file included an executable named “Maduro to be taken to New York.exe” and a dynamic-link library (DLL), “kugou.dll”.
The binary “Maduro to be taken to New York.exe” is a legitimate binary (albeit with an expired signature) related to KuGou, a Chinese streaming platform. Its function is to load the DLL “kugou.dll” via DLL search order. In this instance, the expected DLL has been replaced with a malicious one with the same name to load it.
Figure 1: DLL called with LoadLibraryW.
Once the DLL is executed, a directory is created C:\ProgramData\Technology360NB with the DLL copied into the directory along with the executable, renamed as “DataTechnology.exe”. A registry key is created for persistence in “HKCU\Software\Microsoft\Windows\CurrentVersion\Run\Lite360” to run DataTechnology.exe --DATA on log on.
Figure 2. Registry key added for persistence.
Figure 3: Folder “Technology360NB” created.
During execution, a dialog box appears with the caption “Please restart your computer and try again, or contact the original author.”
Figure 4. Message box prompting user to restart.
Prompting the user to restart triggers the malware to run from the registry key with the command --DATA, and if the user doesn't, a forced restart is triggered. Once the system is reset, the malware begins periodic TLS connections to the command-and-control (C2) server 172.81.60[.]97 on port 443. While the encrypted traffic prevents direct inspection of commands or data, the regular beaconing and response traffic strongly imply that the malware has the ability to poll a remote server for instructions, configuration, or tasking.
Conclusion
Threat groups have long used geopolitical issues and other high-profile events to make malicious content appear more credible or urgent. Since the onset of the war in Ukraine, organizations have been repeatedly targeted with spear-phishing emails using subject lines related to the ongoing conflict, including references to prisoners of war [1]. Similarly, the Chinese threat group Mustang Panda frequently uses this tactic to deploy backdoors, using lures related to the Ukrainian war, conventions on Tibet [2], the South China Sea [3], and Taiwan [4].
The activity described in this blog shares similarities with previous Mustang Panda campaigns, including the use of a current-events archive, a directory created in ProgramData with a legitimate executable used to load a malicious DLL and run registry keys used for persistence. While there is an overlap of tactics, techniques and procedures (TTPs), there is insufficient information available to confidently attribute this activity to a specific threat group. Users should remain vigilant, especially when opening email attachments.
Credit to Tara Gould (Malware Research Lead) Edited by Ryan Traill (Analyst Content Lead)
Indicators of Compromise (IoCs)
172.81.60[.]97 8f81ce8ca6cdbc7d7eb10f4da5f470c6 - US now deciding what's next for Venezuela.zip 722bcd4b14aac3395f8a073050b9a578 - Maduro to be taken to New York.exe aea6f6edbbbb0ab0f22568dcb503d731 - kugou.dll
Under Medusa’s Gaze: How Darktrace Uncovers RMM Abuse in Ransomware Campaigns
What is Medusa Ransomware in 2025?
In 2025, the Medusa Ransomware-as-a-Service (RaaS) emerged as one of the top 10 most active ransomware threat actors [1]. Its growing impact prompted a joint advisory from the US Cybersecurity and Infrastructure Security Agency (CISA) and the Federal Bureau of Investigation (FBI) [3]. As of January 2026, more than 500 organizations have fallen victim to Medusa ransomware [2].
Darktrace previously investigated Medusa in a 2024 blog, but the group’s rapid expansion and new intelligence released in late 2025 has lead Darktrace’s Threat Research team to investigate further. Recent findings include Microsoft’s research on Medusa actors exploiting a vulnerability in Fortra’s GoAnywhere MFT License Servlet (CVE-2025-10035)[4] and Zencec’s report on Medusa’s abuse of flaws in SimpleHelp’s remote support software (CVE-2024-57726, CVE-2024-57727, CVE-2024-57728) [5].
Reports vary on when Medusa first appeared in the wild. Some sources mention June 2021 as the earliest sightings, while others point to late 2022, when its developers transitioned to the RaaS model, as the true beginning of its operation [3][11].
Madusa Ransomware history and background
The group behind Medusa is known by several aliases, including Storm-1175 and Spearwing [4] [7]. Like its mythological namesake, Medusa has many “heads,” collaborating with initial access brokers (IABs) and, according to some evidence, affiliating with Big Game Hunting (BGH) groups such as Frozen Spider, as well as the cybercriminal group UNC7885 [3][6][13].
Use of Cyrillic in its scripts, activity on Russian-language cybercrime forums, slang unique to Russian criminal subcultures, and avoidance of targets in Commonwealth of Independent States (CIS) countries suggest that Medusa operates from Russia or an allied state [11][12].
Medusa ransomware should not be confused with other similarly named malware, such as the Medusa Android Banking Trojan, the Medusa Botnet/Medusa Stealer, or MedusaLocker ransomware. It is easily distinguishable from these variants because it appends the extension .MEDUSA to encrypted files and drops the ransom note !!!READ_ME_MEDUSA!!!.txt on compromised systems [8].
Who does Madusa Ransomware target?
The group appears to show little restraint, indiscriminately attacking organizations across all sectors, including healthcare, and is known to employ triple extortion tactics whereby sensitive data is encrypted, victims are threatened with data leaks, and additional pressure is applied through DDoS attacks or contacting the victim’s customers, rather than the more common double extortion model [13].
Madusa Ransomware TTPs
To attain initial access, Medusa actors typically purchase access to already compromised devices or accounts via IABs that employ phishing, credential stuffing, or brute-force attacks, and also target vulnerable or misconfigured Internet-facing systems.
Between December 2023 and November 2025, Darktrace observed multiple cases of file encryption related to Medusa ransomware across its customer base. When enabled, Darktrace’s Autonomous Response capability intervened early in the attack chain, blocking malicious activity before file encryption could begin.
Some of the affected were based in Europe, the Middle East and Africa (EMEA), others in the Americas (AMS), and the remainder in the Asia-Pacific and Japan region. The most impacted sectors were financial services and the automotive industry, followed by healthcare, and finally organizations in arts, entertainment and recreation, ICT, and manufacturing.
Remote Monitoring and Management (RMM) tool abuse
In most customer environments where Medusa file encryption attempts were observed, and in one case where the compromise was contained before encryption, unusual external HTTP connections associated with JWrapper were also detected. JWrapper is a legitimate tool designed to simplify the packaging, distribution, and management of Java applications, enabling the creation of executables that run across different operating systems. Many of the destination IP addresses involved in this activity were linked to SimpleHelp servers or associated with Atera.
Medusa actors appear to favor RMM tools such as SimpleHelp. Unpatched or misconfigured SimpleHelp RMM servers can serve as an initial access vector to the victims’ infrastructure. After gaining access to SimpleHelp management servers, the threat actors edit server configuration files to redirect existing SimpleHelp RMM agents to communicate with unauthorized servers under their control.
The SimpleHelp tool is not only used for command-and-control (C2) and enabling persistence but is also observed during lateral movement within the network, downloading additional attack tools, data exfiltration, and even ransomware binary execution. Other legitimate remote access tools abused by Medusa in a similar manner to evade detection include Atera, AnyDesk, ScreenConnect, eHorus, N-able, PDQ Deploy/Inventory, Splashtop, TeamViewer, NinjaOne, Navicat, and MeshAgent [4][5][15][16][17].
Data exfiltration
Another correlation among Darktrace customers affected by Medusa was observed during the data exfiltration phase. In several environments, data was exfiltrated to the endpoints erp.ranasons[.]com or pruebas.pintacuario[.]mx (143.110.243[.]154, 144.217.181[.]205) over ports 443, 445, and 80. erp.ranasons[.]com was seemingly active between November 2024 and September 2025, while pruebas.pintacuario[.]mx was seen from November 2024 to March 2025. Evidence suggests that pruebas.pintacuario[.]mx previously hosted a SimpleHelp server [22][23].
Apart from RMM tools, Medusa is also known to use Rclone and Robocopy for data exfiltration [3][19]. During one Medusa compromise detected in mid-2024, the customer’s data was exfiltrated to external destinations associated with the Ngrok proxy service using an SSH-2.0-rclone client.
Medusa Compromise Leveraging SimpleHelp
In Q4 2025, Darktrace assisted a European company impacted by Medusa ransomware. The organization had partial Darktrace / NETWORK coverage and had configured Darktrace’s Autonomous Response capability to require manual confirmation for all actions. Despite these constraints, data received through the customer’s security integration with CrowdStrike Falcon enabled Darktrace analysts to reconstruct the attack chain, although the initial access vector remains unclear due to limited visibility.
In late September 2025, a device out of the scope of Darktrace's visibility began scanning the network and using RDP, NTLM/SMB, DCE_RPC, and PowerShell for lateral movement.
CrowdStrike “Defense Evasion: Disable or Modify Tools” alerts related to a suspicious driver (c:\windows\[0-9a-b]{4}.exe) and a PDQ Deploy executable (share=\\<device_hostname>\ADMIN$ file=AdminArsenal\PDQDeployRunner\service-1\exec\[0-9a-b]{4}.exe) suggest that the attackers used the Bring Your Own Vulnerable Driver (BYOVD) technique to terminate antivirus processes on network devices, leveraging tools such as KillAV or AbyssWorker along with the PDQ Software Deployment solution [19][26].
A few hours later, Darktrace observed the same device that had scanned the network writing Temp\[a-z]{2}.exe over SMB to another device on the same subnet. According to data from the CrowdStrike alert, this executable was linked to an RMM application located at C:\Users\<compromised_user>\Documents\[a-z]{2}.exe. The same compromised user account later triggered a CrowdStrike “Command and Control: Remote Access Tools” alert when accessing C:\ProgramData\JWrapper-Remote Access\JWrapper-Remote Access Bundle-[0-9]{11}\JWrapperTemp-[0-9]{10}-[0-9]{1}-app\bin\windowslauncher.exe [27].
Figure 1: An executable file associated with the SimpleHelp RMM tool being written to other devices using the SMB protocol, as detected by Darktrace.
Soon after, the destination device and multiple other network devices began establishing connections to 31.220.45[.]120 and 213.183.63[.]41, both of which hosted malicious SimpleHelp RMM servers. These C2 connections continued for more than 20 days after the initial compromise.
CrowdStrike integration alerts for the execution of robocopy . "c:\windows\\" /COPY:DT /E /XX /R:0 /W:0 /NP /XF RunFileCopy.cmd /IS /IT commands on several Windows servers, suggested that this utility was likely used to stage files in preparation for data exfiltration [19].
Around two hours later, Darktrace detected another device connecting to the attacker’s SimpleHelp RMM servers. This internal server had ‘doc’ in its hostname, indicating it was likely a file server. It was observed downloading documents from another internal server over SMB and uploading approximately 70 GiB of data to erp.ranasons[.]com (143.110.243[.]154:443).
Figure 2: Data uploaded to erp.ranasons[.]com and the number of model alerts from the exfiltrating device, represented by yellow and orange dots.
Darktrace’s Cyber AI Analyst autonomously investigated the unusual connectivity, correlating the separate C2 and data exfiltration events into a single incident, providing greater visibility into the ongoing attack.
Figure 3: Cyber AI Analyst identified a file server making C2 connections to an attacker-controlled SimpleHelp server (213.183.63[.]41) and exfiltrating data to erp.ranasons[.]com.
Figure 4: The same file server that connected to 213.183.63[.]41 and exfiltrated data to erp.ranasons[.]com was also observed attempting to connect to an IP address associated with Moscow, Russia (193.37.69[.]154:7070).
One of the devices connecting to the attacker's SimpleHelp RMM servers was also observed downloading 35 MiB from [0-9]{4}.filemail[.]com. Filemail, a legitimate file-sharing service, has reportedly been abused by Medusa actors to deliver additional malicious payloads [11].
Figure 5: A device controlled remotely via SimpleHelp downloading additional tooling from the Filemail file-sharing service.
Finally, integration alerts related to the ransomware binary, such as c:\windows\system32\gaze.exe and <device_hostname>\ADMIN$ file=AdminArsenal\PDQDeployRunner\service-1\exec\gaze.exe, along with “!!!READ_ME_MEDUSA!!!.txt” ransom notes were observed on network devices. This indicates that file encryption in this case was most likely carried out directly on the victim hosts rather than via the SMB protocol [3].
Conclusion
Threat actors, including nation-state actors and ransomware groups like Medusa, have long abused legitimate commercial RMM tools, typically used by system administrators for remote monitoring, software deployment, and device configuration, instead of relying on remote access trojans (RATs).
Attackers employ existing authorized RMM tools or install new remote administration software to enable persistence, lateral movement, data exfiltration, and ingress tool transfer. By mimicking legitimate administrative behavior, RMM abuse enables attackers to evade detection, as security software often implicitly trusts these tools, allowing attackers to bypass traditional security controls [28][29][30].
To mitigate such risks, organizations should promptly patch publicly exposed RMM servers and adopt anomaly-based detection solutions, like Darktrace / NETWORK, which can distinguish legitimate administrative activity from malicious behavior, applying rapid response measures through its Autonomous Response capability to stop attacks in their tracks.
Darktrace delivers comprehensive network visibility and Autonomous Response capabilities, enabling real-time detection of anomalous activity and rapid mitigation, even if an organization fall under Medusa’s gaze.
Credit to Signe Zaharka (Principal Cyber Analyst) and Emma Foulger (Global Threat Research Operations Lead
Edited by Ryan Traill (Analyst Content Lead)
Appendices
List of Indicators of Compromise (IoCs)
IoC - Type - Description + Confidence + Time Observed
185.108.129[.]62 IP address Malicious SimpleHelp server observed during Medusa attacks (High confidence) - March 7, 2023
185.126.238[.]119 IP address Malicious SimpleHelp server observed during Medusa attacks (High confidence) - November 26-27, 2024
213.183.63[.]41 IP address Malicious SimpleHelp server observed during Medusa attacks (High confidence) - November 28, 2024 - Sep 30, 2025
213.183.63[.]42 IP address Malicious SimpleHelp server observed during Medusa attacks (High confidence) - July 4 -9 , 2024
31.220.45[.]120 IP address Malicious SimpleHelp server observed during Medusa attacks (High confidence) - September 12 - Oct 20 , 2025
91.92.246[.]110 IP address Malicious SimpleHelp server observed during Medusa attacks (High confidence) - May 24, 2024
45.9.149[.]112:15330 IP address Malicious SimpleHelp server observed during Medusa attacks (High confidence) - June 21, 2024
89.36.161[.]12 IP address Malicious SimpleHelp server observed during Medusa attacks (High confidence) - June 26-28, 2024
193.37.69[.]154:7070 IP address Suspicious RU IP seen on a device being controlled via SimpleHelp and exfiltrating data to a Medusa related endpoint - September 30 - October 20, 2025
erp.ranasons[.]com·143.110.243[.]154 Hostname Data exfiltration destination - November 27, 2024 - September 30, 2025
pruebas.pintacuario[.]mx·144.217.181[.]205 - Hostname Data exfiltration destination - November 27, 2024 - March 26, 2025
lirdel[.]com · 44.235.83[.]125/a.msi (1b9869a2e862f1e6a59f5d88398463d3962abe51e19a59) File & hash Atera related file downloaded with PowerShell - June 20, 2024
wizarr.manate[.]ch/108.215.180[.]161:8585/$/1dIL5 File Suspicious file observed on one of the devices exhibiting unusual activity during a Medusa compromise - February 28, 2024
!!!READ_ME_MEDUSA!!!.txt" File - Ransom note
*.MEDUSA - File extension File extension added to encrypted files
gaze.exe – File - Ransomware binary
Darktrace Model Coverage
Darktrace / NETWORK model detections triggered during connections to attacker controlled SimpleHelp servers:
Anomalous Connection/Anomalous SSL without SNI to New External
Anomalous Connection/Multiple Connections to New External UDP Port
Anomalous Connection/New User Agent to IP Without Hostname