Blog
/

Inside the SOC

/
October 13, 2023

Protecting Brazilian Organizations from Malware

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
13
Oct 2023
Discover how Darktrace DETECT thwarted a banking trojan targeting Brazilian organizations, preventing data theft and informing the customer.

Nationally Targeted Cyber Attacks

As the digital world becomes more and more interconnected, the threat of cyber-attacks transcends borders and presents a significant concern to security teams worldwide. Yet despite this, some malicious actors have shown a tendency to focus their attacks on specific countries. By employing highly tailored tactics, techniques, and procedures (TTPs) to target users and organizations from one nation, rather than launching more widespread campaigns, threat actors are able to maximize the efficiency and efficacy of their attacks.

What is Guildma and how does it work?

One example can be seen in the remote access trojan (RAT) and information stealer, Guildma. Guildma, also known by the demonic moniker, Astaroth, first appeared in the wild in 2017 and is a Latin America-based banking trojan known to primarily target organizations in Brazil, although has more recently been observed in North America and Europe too [1].

By concentrating their efforts on Brazil, Guildma is able to launch attacks with a high degree of specificity, focussing their language on Brazilian norms, referencing Brazilian institutions, and tailoring their social engineering accordingly. Moreover, considering that Brazilian customers likely represent a relatively small portion of security vendors’ clientele, there may be a limited pool of available indicators of compromise (IoCs). This limitation could significantly impact the efficacy of traditional security measures that rely on signature-based detection methods in identifying emerging threats.

Darktrace vs. Guildma

In June 2023, Darktrace observed a Guildma compromise on the network of a Brazilian customer in the manufacturing sector. The anomaly-based detection capabilities of Darktrace DETECT™ allowed it to identify suspicious activity surrounding the compromise, agnostic of any IoCs or specific signatures of a threat actor. Following the successful detection of the malware, the Darktrace Security Operations Center (SOC) carried out a thorough investigation into the compromise and brought it to the attention of the customer’s security team, allowing them to quickly react and prevent any further escalation.

This early detection by Darktrace effectively shut down Guildma operations on the network before any sensitive data could be gathered and stolen by malicious actors.

Attack Overview

In the case of the Guildma RAT detected by Darktrace, the affected system was a desktop device, ostensibly used by one employee. The desktop was first observed on the customer’s network in April 2023; however, it is possible that the initial compromise took place before Darktrace had visibility over the network. Guildma compromises typically start with phishing campaigns, indicating that the initial intrusion in this case likely occurred beyond the scope of Darktrace’s monitoring [2].

Early indicators

On June 23, 2023, Darktrace DETECT observed the first instance of unusual activity being performed by the affected desktop device, namely regular HTTP POST requests to a suspicious domain, indicative of command-and-control (C2) beaconing activity. The domain used an unusual Top-Level Domain (TLD), with a plausibly meaningful (in Portuguese) second-level domain and a seemingly random 11-character third-level domain, “dn00x1o0f0h.puxaofolesanfoneiro[.]quest”.

Throughout the course of this attack, Darktrace observed additional connections like this, representing something of a signature of the attack. The suspicious domains were typically registered within six months of observation, featured an uncommon TLD, and included a seemingly randomized third-level domain of 6-11 characters, followed by a plausibly legitimate second-level domain with a minimum of 15 characters. The connections to these unusual endpoints all followed a similar two-hour beaconing period, suggesting that Guildma may rotate its C2 infrastructure, using the Multi-Stage Channels TTP (MITRE ID T1104) to evade restrictions by firewalls or other signature-based security tools that rely on static lists of IoCs and “known bads”.

Figure 1: Model Breach Event Log for the “Compromise / Agent Beacon (Long Period)”. The connections at two-hour intervals, including at unreasonably late hours, is consistent with beaconing for C2.

Living-off-the-land with BITS abuse

A week later, on June 30, 2023, the affected device was observed making an unusual Microsoft BITS connection. BitsAdmin is a deprecated administrative tool available on most Windows devices and can be leveraged by attackers to transfer malicious obfuscated payloads into and around an organization’s network. The domain observed during this connection, "cwiufv.pratkabelhaemelentmarta[.]shop”, follows the previously outlined domain naming convention. Multiple open-source intelligence (OSINT) sources indicated that the endpoint had links to malware and, when visited, redirected users to the Brazilian versions of WhatsApp and Zoom. This is likely a tactic employed by threat actors to ensure users are unaware of suspicious domains, and subsequent malware downloads, by redirected them to a trusted source.

Figure 2: A screenshot of the Model Breach log summary of the “Unusual BITS Activity” model breach. The breach log contains key details such as the ASN, hostname, and user agent used in the breaching connection.

Obfuscated Tooling Downloads

Within one minute of the suspicious BITS activity, Darktrace detected the device downloading a suspicious file from the aforementioned endpoint, (cwiufv.pratkabelhaemelentmarta[.]shop). The file in question appeared to be a ZIP file with the 17-digit numeric name query, namely “?37627343830628786”, with the filename “zodzXLWwaV.zip”.

However, Darktrace DETECT recognized that the file extension did not match its true file type and identified that it was, in fact, an executable (.exe) file masquerading as a ZIP file. By masquerading files downloads, threat actors are able to make their malicious files seem legitimate and benign to security teams and traditional security tools, thereby evading detection. In this case, the suspicious file in question was indeed identified as malicious by multiple OSINT sources.

Following the initial download of this masqueraded file, Darktrace also detected subsequent downloads of additional executable files from the same endpoint.  It is possible that these downloads represented Guildma actors attempting to download additional tooling, including the information-stealer widely known as Astaroth, in order to begin its data collection and exfiltration operations.

Figure 3: A screenshot of a graph produced by the Threat Visualizer of the affected device's external connections. The visual aid marks breaches with red and orange dots, creating a more intuitive explanation of observed behavior.

Darktrace SOC

The successful detection of the masqueraded file transfer triggered an Enhanced Monitoring model breach, a high-fidelity model designed to detect activity that is more likely indicative of an ongoing compromise.  

This breach was immediately escalated to the Darktrace SOC for analysis by Darktrace’s team of expert analysts who were able to complete a thorough investigation and notify the customer’s security team of the compromise in just over half an hour. The investigation carried out by Darktrace’s analysts confirmed that the activity was, indeed, malicious, and provided the customer’s security team with details around the extent of the compromise, the specific IoCs, and risks this compromise posed to their digital environment. This information empowered the customer’s security team to promptly address the issue, having a significant portion of the investigative burden reduced and resolved by the round-the-clock Darktrace analyst team.

In addition to this, Cyber AI Analyst™ launched an investigation into the ongoing compromise and was able to connect the anomalous HTTP connections to the subsequent suspicious file downloads, viewing them as one incident rather than two isolated events. AI Analyst completed its investigation in just three minutes, upon which it provided a detailed summary of events of the activity, further aiding the customer’s remediation process.

Figure 4: CyberAI Analyst summary of the suspicious activity. A prose summary of the breach activity and the meaning of the technical details is included to maintain an easily digestible stream of information.

Conclusion

While the combination of TTPs observed in this Guildma RAT compromise is not uncommon globally, the specificity to targeting organizations in Brazil allows it to be incredibly effective. By focussing on just one country, malicious actors are able to launch highly specialized attacks, adapting the language used and tailoring the social engineering effectively to achieve maximum success. Moreover, as Brazil likely represents a smaller segment of security vendors’ customers, therefore leading to a limited pool of IoCs, attackers are often able to evade traditional signature-based detections.

Darktrace DETECT’s anomaly-based approach to threat detection allows for effective detection, mitigation, and response to emerging threats, regardless of the specifics of the attack and without relying on threat intelligence or previous IoCs. Ultimately in this case, Darktrace was able to identify the suspicious activity surrounding the Guildma compromise and swiftly bring it to the attention of the customer’s security team, before any data gathering, or exfiltration activity took place.

Darktrace’s threat detection capabilities coupled with its expert analyst team and round-the-clock SOC response is a highly effective addition to an organization’s defense-in-depth, whether in Brazil or anywhere else around the world.

Credit to Roberto Romeu, Senior SOC Analyst, Taylor Breland, Analyst Team Lead, San Francisco

References

https://malpedia.caad.fkie.fraunhofer.de/details/win.astaroth

https://www.welivesecurity.com/2020/03/05/guildma-devil-drives-electric/  

Appendices

Darktrace DETECT Model Breaches

  • Compromise / Agent Beacon (Long Period)
  • Device / Unusual BITS Activity
  • Anomalous File / Anomalous Octet Stream (No User Agent)
  • Anomalous File / Masqueraded File Transfer (Enhanced Monitoring Model)
  • Anomalous File / EXE from Rare External Location
  • Anomalous File / Multiple EXE from Rare External Locations

List of IoCs

IoC Type - Description + Confidence

5q710e1srxk.broilhasoruikaliventiladorrta[.]shop - Domain - Likely C2 server

m2pkdlse8md.roilhasohlcortinartai[.]hair - Domain - Likely C2 server

cwiufv.pratkabelhaemelentmarta[.]shop - Domain - C2 server

482w5pct234.jaroilcasacorkalilc[.]ru[.]com - Domain - C2 server

dn00x1o0f0h.puxaofolesanfoneiro[.]quest - Domain - Likely C2 server

10v7mybga55.futurefrontier[.]cyou - Domain - Likely C2 server

f788gbgdclp.growthgenerator[.]cyou - Domain - Likely C2 server

6nieek.satqabelhaeiloumelsmarta[.]shop - Domain - Likely C2 server

zodzXLWwaV.zip (SHA1 Hash: 2a4062e10a5de813f5688221dbeb3f3ff33eb417 ) - File hash - Malware

IZJQCAOXQb.zip (SHA1 Hash: eaec1754a69c50eac99e774b07ef156a1ca6de06 ) - File hash - Likely malware

MITRE ATT&CK Mapping

ATT&CK Technique - Technique ID

Multi-Stage Channels - T1104

BITS Jobs - T1197

Application Layer Protocol: Web Protocols - T1071.001

Acquire Infrastructure: Web Services - T1583.006

Obtain Capabilities: Malware - T1588.001

Masquerading - T1036

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Roberto Romeu
Senior SOC Analyst
Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

January 29, 2025

/

Inside the SOC

Bytesize Security: Insider Threats in Google Workspace

Default blog imageDefault blog image

What is an insider threat?

An insider threat is a cyber risk originating from within an organization. These threats can involve actions such as an employee inadvertently clicking on a malicious link (e.g., a phishing email) or an employee with malicious intent conducting data exfiltration for corporate sabotage.

Insiders often exploit their knowledge and access to legitimate corporate tools, presenting a continuous risk to organizations. Defenders must protect their digital estate against threats from both within and outside the organization.

For example, in the summer of 2024, Darktrace / IDENTITY successfully detected a user in a customer environment attempting to steal sensitive data from a trusted Google Workspace service. Despite the use of a legitimate and compliant corporate tool, Darktrace identified anomalies in the user’s behavior that indicated malicious intent.

Attack overview: Insider threat

In June 2024, Darktrace detected unusual activity involving the Software-as-a-Service (SaaS) account of a former employee from a customer organization. This individual, who had recently left the company, was observed downloading a significant amount of data in the form of a “.INDD” file (an Adobe InDesign document typically used to create page layouts [1]) from Google Drive.

While the use of Google Drive and other Google Workspace platforms was not unexpected for this employee, Darktrace identified that the user had logged in from an unfamiliar and suspicious IPv6 address before initiating the download. This anomaly triggered a model alert in Darktrace / IDENTITY, flagging the activity as potentially malicious.

A Model Alert in Darktrace / IDENTITY showing the unusual “.INDD” file being downloaded from Google Workspace.
Figure 1: A Model Alert in Darktrace / IDENTITY showing the unusual “.INDD” file being downloaded from Google Workspace.

Following this detection, the customer reached out to Darktrace’s Security Operations Center (SOC) team via the Security Operations Support service for assistance in triaging and investigating the incident further. Darktrace’s SOC team conducted an in-depth investigation, enabling the customer to identify the exact moment of the file download, as well as the contents of the stolen documents. The customer later confirmed that the downloaded files contained sensitive corporate data, including customer details and payment information, likely intended for reuse or sharing with a new employer.

In this particular instance, Darktrace’s Autonomous Response capability was not active, allowing the malicious insider to successfully exfiltrate the files. If Autonomous Response had been enabled, Darktrace would have immediately acted upon detecting the login from an unusual (in this case 100% rare) location by logging out and disabling the SaaS user. This would have provided the customer with the necessary time to review the activity and verify whether the user was authorized to access their SaaS environments.

Conclusion

Insider threats pose a significant challenge for traditional security tools as they involve internal users who are expected to access SaaS platforms. These insiders have preexisting knowledge of the environment, sensitive data, and how to make their activities appear normal, as seen in this case with the use of Google Workspace. This familiarity allows them to avoid having to use more easily detectable intrusion methods like phishing campaigns.

Darktrace’s anomaly detection capabilities, which focus on identifying unusual activity rather than relying on specific rules and signatures, enable it to effectively detect deviations from a user’s expected behavior. For instance, an unusual login from a new location, as in this example, can be flagged even if the subsequent malicious activity appears innocuous due to the use of a trusted application like Google Drive.

Credit to Vivek Rajan (Cyber Analyst) and Ryan Traill (Analyst Content Lead)

Appendices

Darktrace Model Detections

SaaS / Resource::Unusual Download Of Externally Shared Google Workspace File

References

[1]https://www.adobe.com/creativecloud/file-types/image/vector/indd-file.html

MITRE ATT&CK Mapping

Technqiue – Tactic – ID

Data from Cloud Storage Object – COLLECTION -T1530

Continue reading
About the author
Vivek Rajan
Cyber Analyst

Blog

/

January 28, 2025

/

Ransomware

RansomHub Ransomware: Darktrace’s Investigation of the Newest Tool in ShadowSyndicate's Arsenal

Default blog imageDefault blog image

What is ShadowSyndicate?

ShadowSyndicate, also known as Infra Storm, is a threat actor reportedly active since July 2022, working with various ransomware groups and affiliates of ransomware programs, such as Quantum, Nokoyawa, and ALPHV. This threat actor employs tools like Cobalt Strike, Sliver, IcedID, and Matanbuchus malware in its attacks. ShadowSyndicate utilizes the same SSH fingerprint (1ca4cbac895fc3bd12417b77fc6ed31d) on many of their servers—85 as of September 2023. At least 52 of these servers have been linked to the Cobalt Strike command and control (C2) framework [1].

What is RansomHub?

First observed following the FBI's takedown of ALPHV/BlackCat in December 2023, RansomHub quickly gained notoriety as a Ransomware-as-a-Service (RaaS) operator. RansomHub capitalized on the law enforcement’s disruption of the LockBit group’s operations in February 2024 to market themselves to potential affiliates who had previously relied on LockBit’s encryptors. RansomHub's success can be largely attributed to their aggressive recruitment on underground forums, leading to the absorption of ex-ALPHV and ex-LockBit affiliates. They were one of the most active ransomware operators in 2024, with approximately 500 victims reported since February, according to their Dedicated Leak Site (DLS) [2].

ShadowSyndicate and RansomHub

External researchers have reported that ShadowSyndicate had as many as seven different ransomware families in their arsenal between July 2022, and September 2023. Now, ShadowSyndicate appears to have added RansomHub’s their formidable stockpile, becoming an affiliate of the RaaS provider [1].

Darktrace’s analysis of ShadowSyndicate across its customer base indicates that the group has been leveraging RansomHub ransomware in multiple attacks in September and October 2024. ShadowSyndicate likely shifted to using RansomHub due to the lucrative rates offered by this RaaS provider, with affiliates receiving up to 90% of the ransom—significantly higher than the general market rate of 70-80% [3].

In many instances where encryption was observed, ransom notes with the naming pattern “README_[a-zA-Z0-9]{6}.txt” were written to affected devices. The content of these ransom notes threatened to release stolen confidential data via RansomHub’s DLS unless a ransom was paid. During these attacks, data exfiltration activity to external endpoints using the SSH protocol was observed. The external endpoints to which the data was transferred were found to coincide with servers previously associated with ShadowSyndicate activity.

Darktrace’s coverage of ShadowSyndicate and RansomHub

Darktrace’s Threat Research team identified high-confidence indicators of compromise (IoCs) linked to the ShadowSyndicate group deploying RansomHub. The investigation revealed four separate incidents impacting Darktrace customers across various sectors, including education, manufacturing, and social services. In the investigated cases, multiple stages of the kill chain were observed, starting with initial internal reconnaissance and leading to eventual file encryption and data exfiltration.

Attack Overview

Timeline attack overview of ransomhub ransomware

Internal Reconnaissance

The first observed stage of ShadowSyndicate attacks involved devices making multiple internal connection attempts to other internal devices over key ports, suggesting network scanning and enumeration activity. In this initial phase of the attack, the threat actor gathers critical details and information by scanning the network for open ports that might be potentially exploitable. In cases observed by Darktrace affected devices were typically seen attempting to connect to other internal locations over TCP ports including 22, 445 and 3389.

C2 Communication and Data Exfiltration

In most of the RansomHub cases investigated by Darktrace, unusual connections to endpoints associated with Splashtop, a remote desktop access software, were observed briefly before outbound SSH connections were identified.

Following this, Darktrace detected outbound SSH connections to the external IP address 46.161.27[.]151 using WinSCP, an open-source SSH client for Windows used for secure file transfer. The Cybersecurity and Infrastructure Security Agency (CISA) identified this IP address as malicious and associated it with ShadowSyndicate’s C2 infrastructure [4]. During connections to this IP, multiple gigabytes of data were exfiltrated from customer networks via SSH.

Data exfiltration attempts were consistent across investigated cases; however, the method of egress varied from one attack to another, as one would expect with a RaaS strain being employed by different affiliates. In addition to transfers to ShadowSyndicate’s infrastructure, threat actors were also observed transferring data to the cloud storage and file transfer service, MEGA, via HTTP connections using the ‘rclone’ user agent – a command-line program used to manage files on cloud storage. In another case, data exfiltration activity occurred over port 443, utilizing SSL connections.

Lateral Movement

In investigated incidents, lateral movement activity began shortly after C2 communications were established. In one case, Darktrace identified the unusual use of a new administrative credential which was quickly followed up with multiple suspicious executable file writes to other internal devices on the network.

The filenames for this executable followed the regex naming convention “[a-zA-Z]{6}.exe”, with two observed examples being “bWqQUx.exe” and “sdtMfs.exe”.

Cyber AI Analyst Investigation Process for the SMB Writes of Suspicious Files to Multiple Devices' incident.
Figure 1: Cyber AI Analyst Investigation Process for the SMB Writes of Suspicious Files to Multiple Devices' incident.

Additionally, script files such as “Defeat-Defender2.bat”, “Share.bat”, and “def.bat” were also seen written over SMB, suggesting that threat actors were trying to evade network defenses and detection by antivirus software like Microsoft Defender.

File Encryption

Among the three cases where file encryption activity was observed, file names were changed by adding an extension following the regex format “.[a-zA-Z0-9]{6}”. Ransom notes with a similar naming convention, “README_[a-zA-Z0-9]{6}.txt”, were written to each share. While the content of the ransom notes differed slightly in each case, most contained similar text. Clear indicators in the body of the ransom notes pointed to the use of RansomHub ransomware in these attacks. As is increasingly the case, threat actors employed double extortion tactics, threatening to leak confidential data if the ransom was not paid. Like most ransomware, RansomHub included TOR site links for communication between its "customer service team" and the target.

Figure 2: The graph shows the behavior of a device with encryption activity, using the “SMB Sustained Mimetype Conversion” and “Unusual Activity Events” metrics over three weeks.

Since Darktrace’s Autonomous Response capability was not enabled during the compromise, the ransomware attack succeeded in its objective. However, Darktrace’s Cyber AI Analyst provided comprehensive coverage of the kill chain, enabling the customer to quickly identify affected devices and initiate remediation.

Figure 3: Cyber AI Analyst panel showing the critical incidents of the affected device from one of the cases investigated.

In lieu of Autonomous Response being active on the networks, Darktrace was able to suggest a variety of manual response actions intended to contain the compromise and prevent further malicious activity. Had Autonomous Response been enabled at the time of the attack, these actions would have been quickly applied without any human interaction, potentially halting the ransomware attack earlier in the kill chain.

Figure 4: A list of suggested Autonomous Response actions on the affected devices."

Conclusion

The Darktrace Threat Research team has noted a surge in attacks by the ShadowSyndicate group using RansomHub’s RaaS of late. RaaS has become increasingly popular across the threat landscape due to its ease of access to malware and script execution. As more individual threat actors adopt RaaS, security teams are struggling to defend against the increasing number of opportunistic attacks.

For customers subscribed to Darktrace’s Security Operations Center (SOC) services, the Analyst team promptly investigated detections of the aforementioned unusual and anomalous activities in the initial infection phases. Multiple alerts were raised via Darktrace’s Managed Threat Detection to warn customers of active ransomware incidents. By emphasizing anomaly-based detection and response, Darktrace can effectively identify devices affected by ransomware and take action against emerging activity, minimizing disruption and impact on customer networks.

Credit to Kwa Qing Hong (Senior Cyber Analyst and Deputy Analyst Team Lead, Singapore) and Signe Zahark (Principal Cyber Analyst, Japan)

Appendices

Darktrace Model Detections

Antigena Models / Autonomous Response:

Antigena / Network / Insider Threat / Antigena Network Scan Block

Antigena / Network / Insider Threat / Antigena SMB Enumeration Block

Antigena / Network / Insider Threat / Antigena Internal Anomalous File Activity

Antigena / Network / Insider Threat / Antigena Large Data Volume Outbound Block

Antigena / Network / Significant Anomaly / Antigena Significant Anomaly from Client Block

Antigena / Network / Significant Anomaly / Antigena Breaches Over Time Block

Antigena / Network / Significant Anomaly / Antigena Controlled and Model Breach

Antigena / Network / Significant Anomaly / Antigena Significant Server Anomaly Block

Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Server Block

Antigena / Network / External Threat / Antigena Suspicious Activity Block

Antigena / Network / External Threat / Antigena Suspicious File Pattern of Life Block

Antigena / Network / External Threat / Antigena File then New Outbound Block


Network Reconnaissance:

Device / Network Scan

Device / ICMP Address Scan

Device / RDP Scan
Device / Anomalous LDAP Root Searches
Anomalous Connection / SMB Enumeration
Device / Spike in LDAP Activity

C2:

Enhanced Monitoring - Device / Lateral Movement and C2 Activity

Enhanced Monitoring - Device / Initial Breach Chain Compromise

Enhanced Monitoring - Compromise / Suspicious File and C2

Compliance / Remote Management Tool On Server

Anomalous Connection / Outbound SSH to Unusual Port


External Data Transfer:

Enhanced Monitoring - Unusual Activity / Enhanced Unusual External Data Transfer

Unusual Activity / Unusual External Data Transfer

Anomalous Connection / Data Sent to Rare Domain

Unusual Activity / Unusual External Data to New Endpoint

Compliance / SSH to Rare External Destination

Anomalous Connection / Application Protocol on Uncommon Port

Enhanced Monitoring - Anomalous File / Numeric File Download

Anomalous File / New User Agent Followed By Numeric File Download

Anomalous Server Activity / Outgoing from Server

Device / Large Number of Connections to New Endpoints

Anomalous Connection / Multiple HTTP POSTs to Rare Hostname

Anomalous Connection / Uncommon 1 GiB Outbound

Lateral Movement:

User / New Admin Credentials on Server

Anomalous Connection / New or Uncommon Service Control

Anomalous Connection / High Volume of New or Uncommon Service Control

Anomalous File / Internal / Executable Uploaded to DC

Anomalous Connection / Suspicious Activity On High Risk Device

File Encryption:

Compliance / SMB Drive Write

Anomalous File / Internal / Additional Extension Appended to SMB File

Compromise / Ransomware / Possible Ransom Note Write

Anomalous Connection / Suspicious Read Write Ratio

List of Indicators of Compromise (IoCs)

IoC - Type - Description + Confidence

83.97.73[.]198 - IP - Data exfiltration endpoint

108.181.182[.]143 - IP - Data exfiltration endpoint

46.161.27[.]151 - IP - Data exfiltration endpoint

185.65.212[.]164 - IP - Data exfiltration endpoint

66[.]203.125.21 - IP - MEGA endpoint used for data exfiltration

89[.]44.168.207 - IP - MEGA endpoint used for data exfiltration

185[.]206.24.31 - IP - MEGA endpoint used for data exfiltration

31[.]216.148.33 - IP - MEGA endpoint used for data exfiltration

104.226.39[.]18 - IP - C2 endpoint

103.253.40[.]87 - IP - C2 endpoint

*.relay.splashtop[.]com - Hostname - C2 & data exfiltration endpoint

gfs***n***.userstorage.mega[.]co.nz - Hostname - MEGA endpoint used for data exfiltration

w.api.mega[.]co.nz - Hostname - MEGA endpoint used for data exfiltration

ams-rb9a-ss.ams.efscloud[.]net - Hostname - Data exfiltration endpoint

MITRE ATT&CK Mapping

Tactic - Technqiue

RECONNAISSANCE – T1592.004 Client Configurations

RECONNAISSANCE – T1590.005 IP Addresses

RECONNAISSANCE – T1595.001 Scanning IP Blocks

RECONNAISSANCE – T1595.002 Vulnerability Scanning

DISCOVERY – T1046 Network Service Scanning

DISCOVERY – T1018 Remote System Discovery

DISCOVERY – T1083 File and Directory Discovery
INITIAL ACCESS - T1189 Drive-by Compromise

INITIAL ACCESS - T1190 Exploit Public-Facing Application

COMMAND AND CONTROL - T1001 Data Obfuscation

COMMAND AND CONTROL - T1071 Application Layer Protocol

COMMAND AND CONTROL - T1071.001 Web Protocols

COMMAND AND CONTROL - T1573.001 Symmetric Cryptography

COMMAND AND CONTROL - T1571 Non-Standard Port

DEFENSE EVASION – T1078 Valid Accounts

DEFENSE EVASION – T1550.002 Pass the Hash

LATERAL MOVEMENT - T1021.004 SSH

LATERAL MOVEMENT – T1080 Taint Shared Content

LATERAL MOVEMENT – T1570 Lateral Tool Transfer

LATERAL MOVEMENT – T1021.002 SMB/Windows Admin Shares

COLLECTION - T1185 Man in the Browser

EXFILTRATION - T1041 Exfiltration Over C2 Channel

EXFILTRATION - T1567.002 Exfiltration to Cloud Storage

EXFILTRATION - T1029 Scheduled Transfer

IMPACT – T1486 Data Encrypted for Impact

References

1.     https://www.group-ib.com/blog/shadowsyndicate-raas/

2.     https://www.techtarget.com/searchsecurity/news/366617096/ESET-RansomHub-most-active-ransomware-group-in-H2-2024

3.     https://cyberint.com/blog/research/ransomhub-the-new-kid-on-the-block-to-know/

4.     https://www.cisa.gov/sites/default/files/2024-05/AA24-131A.stix_.xml

Continue reading
About the author
Qing Hong Kwa
Senior Cyber Analyst and Deputy Analyst Team Lead, Singapore
Your data. Our AI.
Elevate your network security with Darktrace AI