Blog
/
/
March 14, 2021

Botnet and Remote Desktop Protocol Attacks

Understand the connection between botnet malware and RDP attacks, and how to safeguard your network from potential threats.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
14
Mar 2021

What is Remote Desktop Protocol?

With the rise of the dynamic workforce, IT teams have been forced to rely on remote access more than ever before. There are now almost five million Remote Desktop Protocol (RDP) servers exposed to the Internet – around two million more than before the pandemic. Remote desktops are an essential feature for the majority of companies and yet are often exploited by cyber-criminals. Events such as the Florida water plant incident, where an attacker attempted to manipulate the chemical concentration in the water supply of a whole city, show how fatal the consequences of such a cyber-threat can be.

Last month, Darktrace detected a server-side attack at a technology company in the APAC region. The hackers brute-forced an RDP server and attempted to spread throughout the organization. The early detection of this breach was crucial in stopping the cyber-criminals before they could create a botnet and use it to cause serious damage, potentially launching a ransomware or distributed denial-of-service (DDoS) attack.

How to make a botnet

All it takes is one vulnerable RDP server for a threat actor to gain an initial foothold into an organization and spread laterally to build their botnet army. A bot is simply an infected device which can be controlled by a malicious third party; once a network of these hosts has been accumulated, a hacker can perform a range of actions, including:

  • Exfiltration of user credentials and payment data
  • Uploading Trojan malware to the server, which opens a backdoor to the system while masquerading as legitimate software
  • Deploying ransomware, as seen last year in a Dharma attack
  • Renting out access to the company’s infrastructure to other threat actors
  • Mining cryptocurrency with the CPUs of zombie devices

In fact, there is little an attacker can’t do once they have gained remote access to these devices. Botnet malware tends to contain self-updating functions that allow the owner to add or remove functionality. And because the attackers are using legitimate administrative RDP credentials, it is extremely difficult for traditional security tools to detect this malicious activity until it is far too late.

DDoS for hire: A cyber-criminal enterprise

The commerce of cyber-crime has boomed in recent years, further complicating matters. There are now subscription-based and rental models easily available on the Dark Web for a range of illegal activities from Ransomware-as-a-Service to private data auctions. As a result, it is becoming increasingly common for attackers to infect servers and sell the use of these bots online. DDoS for hire services offer access to botnets for as little as $20 per hour. In fact, some of these kits are even legal and market themselves as ‘IP stressers’ or ‘booters’, which can be used legitimately to test the resilience of a website, but are often exploited and used to take down sites and networks.

These developments have sparked a new wave in DDoS and botnet malware attacks as hackers capitalize on the added financial incentive to create botnets and rent them on the Dark Web. ‘Botnet builder’ tools help low-skilled attackers create bots by providing botnet malware and assisting with the initial infection. Sophisticated RDP attacks have blossomed as a result of these kits, which lower the skill-threshold of such attacks and thus make them widely accessible.

Automated RDP attack under the microscope

Figure 1: A timeline of the attack

An Internet-facing RDP server hosting an online games site was recently compromised at a technology company with around 500 devices on its network. The attacker used brute force to glean the correct password and gain remote access to the desktop. It was at this point that Darktrace’s Cyber AI began to detect unusual administrative RDP connections from rare external locations.

In many ways, this incident is typical of an RDP compromise. Credential brute-forcing is a common initial vector for server-side attacks, alongside credential stuffing and exploiting vulnerabilities. In this case, the threat actor likely planned to utilize the exposed server as a pivot point to infect other internal and external devices, possibly to create a botnet-for-hire or exfiltrate sensitive information.

Figure 2: Cyber AI Analyst highlights unusual connections to internal IP addresses from an example breach device

Approximately 14 hours after this compromise, the attacker downloaded multiple files from rare domains. Over the next 18 hours the attacker made over 4.4 million internal and external connection attempts on port 445 using the vulnerable SMBv1 protocol. The majority of these attempts were SMB Session Failures using the credential “administrator”. The server engaged in successful SMB sessions with over 270 internal and external IP addresses.

Outgoing connections to rare but benign locations on ports normally used internally may not match a specific attack profile, meaning they are missed by signature-based security tools. However, despite a lack of threat intelligence on the multiple file download sources, Darktrace’s AI was able to observe the highly unusual nature of the activity, leading to high-confidence detections.

Figure 3: An example graph from Darktrace’s Threat Visualizer showing a large increase in the number of anomalous external connections

Botnet malware and automation

The speed of movement and lack of data exfiltration in this incident suggest that the attack was automated, likely with the help of botnet builder tools. The use of automation to accelerate and mask the breach could have led to severe consequences had Darktrace not alerted the security team in the initial stages.

Attacks against Internet-facing RDP servers remain one of the most common initial infection vectors. With the rise of automated scanning services and botnet malware tools, the ease of compromise has shot up. It is only matter of time before exposed servers are exploited. Furthermore, heavily automated attacks are constantly running and can spread rapidly across the organization. In such cases, it is vital for security teams to be made aware of malicious activity on devices as quickly as possible.

Darktrace’s AI not only pinpointed by itself that the infection had originated on a specific RDP server, it also detected every step of the attack in real time, despite a lack of clear existing signatures. Self-learning AI detects anomalous activity for users and devices across the digital environment and is therefore crucial in shutting down threats at machine speed. Moreover, the visibility provided by Darktrace DETECT greatly reduces the attack surface and identifies badly maintained shadow IT, providing an extra layer of security over the digital business.

Thanks to Darktrace analyst Tom McHale for his insights on the above threat find.

Darktrace model detections:

  • Compliance / Internet Facing RDP Server
  • Anomalous File / Zip or Gzip from Rare External Location
  • Anomalous File / Incoming RAR File
  • Anomalous File / EXE from Rare External Location
  • Anomalous File / Internet Facing System File Download
  • Experimental / Rare Endpoint with Young Certificate
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Device / New User Agent and New IP
  • Anomalous File / Anomalous Octet Stream
  • Device / Anomalous SMB Followed By Multiple Model Breaches
  • Device / Anomalous RDP Followed By Multiple Model Breaches
  • Compliance / External Windows Communications
  • Anomalous Server Activity / Outgoing from Server
  • Device / Increased External Connectivity
  • Device / SMB Session Bruteforce
  • Unusual Activity / Unusual Activity from New Device
  • Device / Network Scan - Low Anomaly Score
  • Device / Large Number of Connections to New Endpoints
  • Device / High Volume of Connections from Guest or New Device
  • Compromise / Suspicious File and C2
  • Anomalous File / Script from Rare Location
  • Anomalous File / Multiple EXE from Rare External Locations
  • Device / Initial Breach Chain Compromise
  • Anomalous Server Activity / Rare External from Server
  • Compromise / High Volume of Connections with Beacon Score
  • Device / Suspicious Domain
  • Compromise / Beacon to Young Endpoint

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO

More in this series

No items found.

Blog

/

Identity

/

July 3, 2025

Top Eight Threats to SaaS Security and How to Combat Them

Default blog imageDefault blog image

The latest on the identity security landscape

Following the mass adoption of remote and hybrid working patterns, more critical data than ever resides in cloud applications – from Salesforce and Google Workspace, to Box, Dropbox, and Microsoft 365.

On average, a single organization uses 130 different Software-as-a-Service (SaaS) applications, and 45% of organizations reported experiencing a cybersecurity incident through a SaaS application in the last year.

As SaaS applications look set to remain an integral part of the digital estate, organizations are being forced to rethink how they protect their users and data in this area.

What is SaaS security?

SaaS security is the protection of cloud applications. It includes securing the apps themselves as well as the user identities that engage with them.

Below are the top eight threats that target SaaS security and user identities.

1.  Account Takeover (ATO)

Attackers gain unauthorized access to a user’s SaaS or cloud account by stealing credentials through phishing, brute-force attacks, or credential stuffing. Once inside, they can exfiltrate data, send malicious emails, or escalate privileges to maintain persistent access.

2. Privilege escalation

Cybercriminals exploit misconfigurations, weak access controls, or vulnerabilities to increase their access privileges within a SaaS or cloud environment. Gaining admin or superuser rights allows attackers to disable security settings, create new accounts, or move laterally across the organization.

3. Lateral movement

Once inside a network or SaaS platform, attackers move between accounts, applications, and cloud workloads to expand their foot- hold. Compromised OAuth tokens, session hijacking, or exploited API connections can enable adversaries to escalate access and exfiltrate sensitive data.

4. Multi-Factor Authentication (MFA) bypass and session hijacking

Threat actors bypass MFA through SIM swapping, push bombing, or exploiting session cookies. By stealing an active authentication session, they can access SaaS environments without needing the original credentials or MFA approval.

5. OAuth token abuse

Attackers exploit OAuth authentication mechanisms by stealing or abusing tokens that grant persistent access to SaaS applications. This allows them to maintain access even if the original user resets their password, making detection and mitigation difficult.

6. Insider threats

Malicious or negligent insiders misuse their legitimate access to SaaS applications or cloud platforms to leak data, alter configurations, or assist external attackers. Over-provisioned accounts and poor access control policies make it easier for insiders to exploit SaaS environments.

7. Application Programming Interface (API)-based attacks

SaaS applications rely on APIs for integration and automation, but attackers exploit insecure endpoints, excessive permissions, and unmonitored API calls to gain unauthorized access. API abuse can lead to data exfiltration, privilege escalation, and service disruption.

8. Business Email Compromise (BEC) via SaaS

Adversaries compromise SaaS-based email platforms (e.g., Microsoft 365 and Google Workspace) to send phishing emails, conduct invoice fraud, or steal sensitive communications. BEC attacks often involve financial fraud or data theft by impersonating executives or suppliers.

BEC heavily uses social engineering techniques, tailoring messages for a specific audience and context. And with the growing use of generative AI by threat actors, BEC is becoming even harder to detect. By adding ingenuity and machine speed, generative AI tools give threat actors the ability to create more personalized, targeted, and convincing attacks at scale.

Protecting against these SaaS threats

Traditionally, security leaders relied on tools that were focused on the attack, reliant on threat intelligence, and confined to a single area of the digital estate.

However, these tools have limitations, and often prove inadequate for contemporary situations, environments, and threats. For example, they may lack advanced threat detection, have limited visibility and scope, and struggle to integrate with other tools and infrastructure, especially cloud platforms.

AI-powered SaaS security stays ahead of the threat landscape

New, more effective approaches involve AI-powered defense solutions that understand the digital business, reveal subtle deviations that indicate cyber-threats, and action autonomous, targeted responses.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

/

July 2, 2025

Pre-CVE Threat Detection: 10 Examples Identifying Malicious Activity Prior to Public Disclosure of a Vulnerability

Default blog imageDefault blog image

Vulnerabilities are weaknesses in a system that can be exploited by malicious actors to gain unauthorized access or to disrupt normal operations. Common Vulnerabilities and Exposures (or CVEs) are a list of publicly disclosed cybersecurity vulnerabilities that can be tracked and mitigated by the security community.

When a vulnerability is discovered, the standard practice is to report it to the vendor or the responsible organization, allowing them to develop and distribute a patch or fix before the details are made public. This is known as responsible disclosure.

With a record-breaking 40,000 CVEs reported for 2024 and a predicted higher number for 2025 by the Forum for Incident Response and Security Teams (FIRST) [1], anomaly-detection is essential for identifying these potential risks. The gap between exploitation of a zero-day and disclosure of the vulnerability can sometimes be considerable, and retroactively attempting to identify successful exploitation on your network can be challenging, particularly if taking a signature-based approach.

Detecting threats without relying on CVE disclosure

Abnormal behaviors in networks or systems, such as unusual login patterns or data transfers, can indicate attempted cyber-attacks, insider threats, or compromised systems. Since Darktrace does not rely on rules or signatures, it can detect malicious activity that is anomalous even without full context of the specific device or asset in question.

For example, during the Fortinet exploitation late last year, the Darktrace Threat Research team were investigating a different Fortinet vulnerability, namely CVE 2024-23113, for exploitation when Mandiant released a security advisory around CVE 2024-47575, which aligned closely with Darktrace’s findings.

Retrospective analysis like this is used by Darktrace’s threat researchers to better understand detections across the threat landscape and to add additional context.

Below are ten examples from the past year where Darktrace detected malicious activity days or even weeks before a vulnerability was publicly disclosed.

ten examples from the past year where Darktrace detected malicious activity days or even weeks before a vulnerability was publicly disclosed.

Trends in pre-cve exploitation

Often, the disclosure of an exploited vulnerability can be off the back of an incident response investigation related to a compromise by an advanced threat actor using a zero-day. Once the vulnerability is registered and publicly disclosed as having been exploited, it can kick off a race between the attacker and defender: attack vs patch.

Nation-state actors, highly skilled with significant resources, are known to use a range of capabilities to achieve their target, including zero-day use. Often, pre-CVE activity is “low and slow”, last for months with high operational security. After CVE disclosure, the barriers to entry lower, allowing less skilled and less resourced attackers, like some ransomware gangs, to exploit the vulnerability and cause harm. This is why two distinct types of activity are often seen: pre and post disclosure of an exploited vulnerability.

Darktrace saw this consistent story line play out during several of the Fortinet and PAN OS threat actor campaigns highlighted above last year, where nation-state actors were seen exploiting vulnerabilities first, followed by ransomware gangs impacting organizations [2].

The same applies with the recent SAP Netweaver exploitations being tied to a China based threat actor earlier this spring with subsequent ransomware incidents being observed [3].

Autonomous Response

Anomaly-based detection offers the benefit of identifying malicious activity even before a CVE is disclosed; however, security teams still need to quickly contain and isolate the activity.

For example, during the Ivanti chaining exploitation in the early part of 2025, a customer had Darktrace’s Autonomous Response capability enabled on their network. As a result, Darktrace was able to contain the compromise and shut down any ongoing suspicious connectivity by blocking internal connections and enforcing a “pattern of life” on the affected device.

This pre-CVE detection and response by Darktrace occurred 11 days before any public disclosure, demonstrating the value of an anomaly-based approach.

In some cases, customers have even reported that Darktrace stopped malicious exploitation of devices several days before a public disclosure of a vulnerability.

For example, During the ConnectWise exploitation, a customer informed the team that Darktrace had detected malicious software being installed via remote access. Upon further investigation, four servers were found to be impacted, while Autonomous Response had blocked outbound connections and enforced patterns of life on impacted devices.

Conclusion

By continuously analyzing behavioral patterns, systems can spot unusual activities and patterns from users, systems, and networks to detect anomalies that could signify a security breach.

Through ongoing monitoring and learning from these behaviors, anomaly-based security systems can detect threats that traditional signature-based solutions might miss, while also providing detailed insights into threat tactics, techniques, and procedures (TTPs). This type of behavioral intelligence supports pre-CVE detection, allows for a more adaptive security posture, and enables systems to evolve with the ever-changing threat landscape.

Credit to Nathaniel Jones (VP, Security & AI Strategy, Field CISO), Emma Fougler (Global Threat Research Operations Lead), Ryan Traill (Analyst Content Lead)

References and further reading:

  1. https://www.first.org/blog/20250607-Vulnerability-Forecast-for-2025
  2. https://cloud.google.com/blog/topics/threat-intelligence/fortimanager-zero-day-exploitation-cve-2024-47575
  3. https://thehackernews.com/2025/05/china-linked-hackers-exploit-sap-and.html

Related Darktrace blogs:

*Self-reported by customer, confirmed afterwards.

**Updated January 2024 blog now reflects current findings

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI