Unsupervised Machine Learning and JA3 for Enhanced Security
Unlock the true power of Darktrace's algorithms. Learn how JA3 enhances cybersecurity defenses with unique TLS/SSL fingerprints & unsupervised machine learning.
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Share
21
Jun 2018
Introducing JA3
JA3 is a methodology for fingerprinting Transport Layer Security applications. It was first posted on GitHub in June 2017 and is the work of Salesforce researchers John Althouse, Jeff Atkinson, and Josh Atkins. The JA3 TLS/SSL fingerprints created can overlap between applications but are still a great Indicator of Compromise (IoC). Fingerprinting is achieved by creating a hash of 5 decimal fields of the Client Hello message that is sent in the initial stages of an TLS/SSL session.
JA3 is an interesting approach to the increasing usage of encryption in networks. There is also a clear uptick in cyber-attacks using encrypted command and control (C2) channels – such as HTTPS – for malware communication.
The benefits of JA3 for enhancing rules-and-signatures security
These near-unique fingerprints can be used to enhance traditional cyber security approaches such as whitelisting, deny-listing, and searching for IoCs.
Let’s take the following JA3 hash for example: 3e860202fc555b939e83e7a7ab518c38. According to one of the public lists that maps JA3s to applications, this JA3 hash is associated with the ‘hola_svc’ application. This is the infamous Hola VPN solution that is non-compliant in most enterprise networks. On the other hand, the following hash is associated with the popular messenger software Slack: a5aa6e939e4770e3b8ac38ce414fd0d5. Traditional cyber security tools can use these hashes like traditional signatures to search for instances of them in data sets or trying to deny-list malicious ones.
While there is some merit to this approach, it comes with all the known limitations of rules-and-signatures defenses, such as the overlaps in signatures, the inability to detect unknown threats, as well as the added complexity of having to maintain a database of known signatures.
JA3 in Darktrace
Darktrace creates JA3 hashes for every TLS/SSL connection it encounters. This is incredibly powerful in a number of ways. First, the JA3 can add invaluable context to a threat hunt. Second, Darktrace can also be queried to see if a particular JA3 was encountered in the network, thus providing actionable intelligence during incident response if JA3 IoCs are known to the incident responders.
Things become much more interesting once we apply our unsupervised machine learning to JA3: Darktrace’s AI algorithms autonomously detect which JA3s are anomalous for the network as a whole and which JA3s are unusual for specific devices.
It basically tells a cyber security expert: This JA3 (3e860202fc555b939e83e7a7ab518c38) has never been seen in the network before and it is only used by one device. It indicates that an application, which is used by nobody else on the network, is initiating TLS/SSL connections. In our experience, this is most often the case for malware or non-compliant software. At this stage, we are observing anomalous behavior.
Darktrace’s AI combines these IoCs (Unusual Network JA3, Unusual Device JA3, …) with many other weak indicators to detect the earliest signs of an emerging threat, including previously unknown threats, without using rules or hard-coded thresholds.
Catching Red-Teams and domain fronting with JA3
The following is an example where Darktrace detected a Red-Team’s C2 communication by observing anomalous JA3 behavior.
The unsupervised machine learning algorithms identified a desktop device using a JA3 that was 100% unusual for the network connecting to an external domain using a Let’s Encrypt certificate, which, along with self-signed certificates, is often abused by malicious actors. As well as the JA3, the domain was also 100% rare for the network – nobody else visited it:
It turned out that a Red-Team had registered a domain that was very similar to the victim’s legitimate domain: www.companyname[.]com (legitimate domain) vs. www.companyname[.]online (malicious domain). This was intentionally done to avoid suspicion and human analysis. Over a 7-day period in a 2,000-device environment, this was the only time that Darktrace flagged unusual behavior of this kind.
As the C2 traffic was encrypted (therefore no intrusion detection was possible on the payload) and the domain was non-suspicious (no reputation-based deny-listing worked), this C2 had remained undetected by the rest of the security stack.
Combining unsupervised machine learning with JA3 is incredibly powerful for the detection of domain fronting. Domain fronting is a popular technique to circumvent censorship and to hide C2 traffic. While some infrastructure providers take action to prevent domain fronting on their end, it is still prevalent and actively used by attackers.
The only agreed-upon method within wide parts of the cyber-security community to detect domain fronting appears to be TLS/SSL inspection. This usually involved breaking up encrypted communication to inspect the clear-text payloads. While this works, it commonly involves additional infrastructure, network restructuring and comes with privacy issues – especially in the context of GDPR.
Unsupervised machine learning makes the detection of domain fronting without having to break up encrypted traffic possible by combining unusual JA3 detection with other anomalies such as beaconing. A good start for a domain fronting threat hunt? A device beaconing to an anomalous CDN with an unusual JA3 hash.
Conclusion
JA3 is not a silver bullet to pre-empt malware compromise. As a signature-based solution, it shares the same limitations of all other defenses that rely on pre-identified threats or deny-lists: having to play a constant game of catch-up with innovative attackers. However, as a novel means of identifying TLS/SSL applications, JA3 hashing can be leveraged as a powerful network behavioral indicator, an additional metric that can flag the use of unauthorized or risky software, or as a means of identifying emerging malware compromises in the initial stages of C2 communication. This is made possible through the power of unsupervised machine learning.
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Tracking a Dragon: Investigating a DragonForce-affiliated ransomware attack with Darktrace
What is DragonForce?
DragonForce is a Ransomware-as-a-Service (RaaS) platform that emerged in late 2023, offering broad-scale capabilities and infrastructure to threat actors. Recently, DragonForce has been linked to attacks targeting the UK retail sector, resulting in several high-profile cases [1][2]. Moreover, the group launched an affiliate program offering a revenue share of roughly 20%, significantly lower than commissions reported across other RaaS platforms [3].
This Darktrace case study examines a DragonForce-linked RaaS infection within the manufacturing industry. The earliest signs of compromise were observed during working hours in August 2025, where an infected device started performing network scans and attempted to brute-force administrative credentials. After eight days of inactivity, threat actors returned and multiple devices began encrypting files via the SMB protocol using a DragonForce-associated file extension. Ransom notes referencing the group were also dropped, suggesting the threat actor is claiming affiliation with DragonForce, though this has not been confirmed.
Despite Darktrace’s detection of the attack in its early stages, the customer’s deployment did not have Darktrace’s Autonomous Response capability configured, allowing the threat to progress to data exfiltration and file encryption.
Darktrace's Observations
While the initial access vector was not clearly defined in this case study, it was likely achieved through common methods previously employed out by DragonForce affiliates. These include phishing emails leveraging social engineering tactics, exploitation of public-facing applications with known vulnerabilities, web shells, and/or the abuse of remote management tools.
Darktrace’s analysis identified internal devices performing internal network scanning, brute-forcing credentials, and executing unusual Windows Registry operations. Notably, Windows Registry events involving "Schedule\Taskcache\Tasks" contain subkeys for individual tasks, storing GUIDs that can be used to locate and analyze scheduled tasks. Additionally, Control\WMI\Security holds security descriptors for WMI providers and Event Tracing loggers that use non-default security settings respectively.
Furthermore, Darktrace identified data exfiltration activity over SSH, including connections to an ASN associated with a malicious hosting service geolocated in Russia.
1. Network Scan & Brute Force
Darktrace identified anomalous behavior in late August to early September 2025, originating from a source device engaging in internal network scanning followed by brute-force attempts targeting administrator credential, including “administrator”, “Admin”, “rdpadmin”, “ftpadmin”.
Upon further analysis, one of the HTTP connections seen in this activity revealed the use of the user agent string “OpenVAS-VT”, suggesting that the device was using the OpenVAS vulnerability scanner. Subsequently, additional devices began exhibiting network scanning behavior. During this phase, a file named “delete.me” was deleted by multiple devices using SMB protocol. This file is commonly associated with network scanning and penetration testing tool NetScan.
2. Windows Registry Key Update
Following the scanning phase, Darktrace observed the initial device then performing suspicious Winreg operations. This included the use of the ”BaseRegOpenKey” function across multiple registry paths.
Additional operations such as “BaseRegOpenKey” and “BaseRegQueryValue” were also seen around this time. These operations are typically used to retrieve specific registry key values and allow write operations to registry keys.
The registry keys observed included “SYSTEM\CurrentControlSet\Control\WMI\Security” and “Software\Microsoft\Windows NT\CurrentVersion\Schedule\Taskcache\Tasks”. These keys can be leveraged by malicious actors to update WMI access controls and schedule malicious tasks, respectively, both of which are common techniques for establishing persistence within a compromised system.
3. New Administrator Credential Usage
Darktrace subsequently detected the device using a highly privileged credential, “administrator”, via a successful Kerberos login for the first time. Shortly after, the same credential was used again for a successful SMB session.
These marked the first instances of authentication using the “administrator” credential across the customer’s environment, suggesting potential malicious use of the credential following the earlier brute-force activity.
Figure 1: Darktrace’s detection of administrator credentials being used in Kerberos login events by an infected device.
Figure 2: Darktrace’s detection of administrator credentials being used in SMB sessions by an infected device.
4. Data Exfiltration
Prior to ransomware deployment, several infected devices were observed exfiltrating data to the malicious IP 45.135.232[.]229 via SSH connections [7][8]. This was followed by the device downloading data from other internal devices and transferring an unusually large volume of data to the same external endpoint.
The IP address was first seen on the network on September 2, 2025 - the same date as the observed data exfiltration activity preceding ransomware deployment and encryption.
Further analysis revealed that the endpoint was geolocated in Russia and registered to the malicious hosting provider Proton66. Multiple external researchers have reported malicious activity involving the same Proton66 ASN (AS198953 Proton66 OOO) as far back as April 2025. These activities notably included vulnerability scanning, exploitation attempts, and phishing campaigns, which ultimately led to malware [4][5][6].
Data Exfiltration Endpoint details.
Endpoint: 45.135.232[.]229
ASN: AS198953 Proton66 OOO
Transport protocol: TCP
Application protocol: SSH
Destination port: 22
Figure 3: Darktrace’s summary of the external IP 45.135.232[.]229, first detected on September 2, 2025. The right-hand side showcases model alerts triggered related to this endpoint including multiple data exfiltration related model alerts.
Further investigation into the endpoint using open-source intelligence (OSINT) revealed that it led to a Microsoft Internet Information Services (IIS) Manager console webpage. This interface is typically used to configure and manage web servers. However, threat actors have been known to exploit similar setups, using fake certificate warnings to trick users into downloading malware, or deploying malicious IIS modules to steal credentials.
Figure 4: Live screenshot of the destination (45.135.232[.]229), captured via OSINT sources, displaying a Microsoft IIS Manager console webpage.
5. Ransomware Encryption & Ransom Note
Multiple devices were later observed connecting to internal devices via SMB and performing a range of actions indicative of file encryption. This suspicious activity prompted Darktrace’s Cyber AI Analyst to launch an autonomous investigation, during which it pieced together associated activity and provided concrete timestamps of events for the customer’s visibility.
During this activity, several devices were seen writing a file named “readme.txt” to multiple locations, including network-accessible webroot paths such as inetpub\ and wwwroot\. This “readme.txt” file, later confirmed to be the ransom note, claimed the threat actors were affiliated with DragonForce.
At the same time, devices were seen performing SMB Move, Write and ReadWrite actions involving files with the “.df_win” extension across other internal devices, suggesting that file encryption was actively occurring.
Figure 5: Darktrace’s detection of SMB events (excluding Read events) where the device was seen moving or writing files with the “.df_win” extension.
Figure 6: Darktrace’s detection of a spike in SMB Write events with the filename “readme.txt” on September 9, indicating the start of file encryption.
Conclusion
The rise of Ransomware-as-a-Service (RaaS) and increased attacker customization is fragmenting tactics, techniques, and procedures (TTPs), making it increasingly difficult for security teams to prepare for and defend against each unique intrusion. RaaS providers like DragonForce further complicate this challenge by enabling a wide range of affiliates, each with varying levels of sophistication [9].
In this instance, Darktrace was able to identify several stages of the attack kill chain, including network scanning, the first-time use of privileged credentials, data exfiltration, and ultimately ransomware encryption. Had the customer enabled Darktrace’s Autonomous Response capability, it would have taken timely action to interrupt the attack in its early stages, preventing the eventual data exfiltration and ransomware detonation.
Credit to Justin Torres, Senior Cyber Analyst, Nathaniel Jones, VP, Security & AI Strategy, FCISO, & Emma Foulger, Global Threat Research Operations Lead.
Darktrace Cyber AI Analyst Coverage/Investigation Events:
· Web Application Vulnerability Scanning of Multiple Devices
· Port Scanning
· Large Volume of SMB Login Failures
· Unusual RDP Connections
· Widespread Web Application Vulnerability Scanning
· Unusual SSH Connections
· Unusual Repeated Connections
· Possible Application Layer Reconnaissance Activity
· Unusual Administrative Connections
· Suspicious Remote WMI Activity
· Extensive Unusual Administrative Connections
· Suspicious Directory Replication Service Activity
· Scanning of Multiple Devices
· Unusual External Data Transfer
· SMB Write of Suspicious File
· Suspicious Remote Service Control Activity
· Access of Probable Unencrypted Password Files
· Internal Download and External Upload
· Possible Encryption of Files over SMB
· SMB Writes of Suspicious Files to Multiple Devices
The content provided in this blog is published by Darktrace for general informational purposes only and reflects our understanding of cybersecurity topics, trends, incidents, and developments at the time of publication. While we strive to ensure accuracy and relevance, the information is provided “as is” without any representations or warranties, express or implied. Darktrace makes no guarantees regarding the completeness, accuracy, reliability, or timeliness of any information presented and expressly disclaims all warranties.
Nothing in this blog constitutes legal, technical, or professional advice, and readers should consult qualified professionals before acting on any information contained herein. Any references to third-party organizations, technologies, threat actors, or incidents are for informational purposes only and do not imply affiliation, endorsement, or recommendation.
Darktrace, its affiliates, employees, or agents shall not be held liable for any loss, damage, or harm arising from the use of or reliance on the information in this blog.
The cybersecurity landscape evolves rapidly, and blog content may become outdated or superseded. We reserve the right to update, modify, or remove any content.
WSUS Exploited: Darktrace’s Analysis of Post-Exploitation Activities Related to CVE-2025-59287
Introduction
On October 14, 2025, Microsoft disclosed a new critical vulnerability affecting the Windows Server Update Service (WSUS), CVE-2025-59287. Exploitation of the vulnerability could allow an unauthenticated attacker to remotely execute code [1][6].
WSUS allows for centralized distribution of Microsoft product updates [3]; a server running WSUS is likely to have significant privileges within a network making it a valuable target for threat actors. While WSUS servers are not necessarily expected to be open to the internet, open-source intelligence (OSINT) has reported thousands of publicly exposed instances that may be vulnerable to exploitation [2].
Microsoft’s initial ‘Patch Tuesday’ update for this vulnerability did not fully mitigate the risk, and so an out-of-band update followed on October 23 [4][5] . Widespread exploitation of this vulnerability started to be observed shortly after the security update [6], prompting CISA to add CVE-2025-59287 to its Known Exploited Vulnerability Catalog (KEV) on October 24 [7].
Attack Overview
The Darktrace Threat Research team have recently identified multiple potential cases of CVE-2025-59287 exploitation, with two detailed here. While the likely initial access method is consistent across the cases, the follow-up activities differed, demonstrating the variety in which such a CVE can be exploited to fulfil each attacker’s specific goals.
The first signs of suspicious activity across both customers were detected by Darktrace on October 24, the same day this vulnerability was added to CISA’s KEV. Both cases discussed here involve customers based in the United States.
Case Study 1
The first case, involving a customer in the Information and Communication sector, began with an internet-facing device making an outbound connection to the hostname webhook[.]site. Observed network traffic indicates the device was a WSUS server.
OSINT has reported abuse of the workers[.]dev service in exploitation of CVE-2025-59287, where enumerated network information gathered through running a script on the compromised device was exfiltrated using this service [8].
In this case, the majority of connectivity seen to webhook[.]site involved a PowerShell user agent; however, cURL user agents were also seen with some connections taking the form of HTTP POSTs. This connectivity appears to align closely with OSINT reports of CVE-2025-59287 post-exploitation behaviour [8][9].
Connections to webhook[.]site continued until October 26. A single URI was seen consistently until October 25, after which the connections used a second URI with a similar format.
Later on October 26, an escalation in command-and-control (C2) communication appears to have occurred, with the device starting to make repeated connections to two rare workers[.]dev subdomains (royal-boat-bf05.qgtxtebl.workers[.]dev & chat.hcqhajfv.workers[.]dev), consistent with C2 beaconing. While workers[.]dev is associated with the legitimate Cloudflare Workers service, the service is commonly abused by malicious actors for C2 infrastructure. The unusual connections to both webhook[.]site and workers[.]dev triggered multiple alerts in Darktrace, including high-fidelity Enhanced Monitoring alerts and Autonomous Response actions.
Infrastructure insight
Hosted on royal-boat-bf05.qgtxtebl.workers[.]dev is a Microsoft Installer file (MSI) named v3.msi.
Figure 1: Screenshot of v3.msi content.
Contained in the MSI file is two Cabinet files named “Sample.cab” and “part2.cab”. After extracting the contents of the cab files, a file named “Config” and a binary named “ServiceEXE”. ServiceEXE is the legitimate DFIR tool Velociraptor, and “Config” contains the configuration details, which include chat.hcqhajfv.workers[.]dev as the server_url, suggesting that Velociraptor is being used as a tunnel to the C2. Additionally, the configuration points to version 0.73.4, a version of Velociraptor that is vulnerable to CVE-2025-6264, a privilege escalation vulnerability.
Figure 2: Screenshot of Config file.
Velociraptor, a legitimate security tool maintained by Rapid7, has been used recently in malicious campaigns. A vulnerable version of tool has been used by threat actors for command execution and endpoint takeover, while other campaigns have used Velociraptor to create a tunnel to the C2, similar to what was observed in this case [10] .
The workers[.]dev communication continued into the early hours of October 27. The most recent suspicious behavior observed on the device involved an outbound connection to a new IP for the network - 185.69.24[.]18/singapure - potentially indicating payload retrieval.
The payload retrieved from “/singapure” is a UPX packed Windows binary. After unpacking the binary, it is an open-source Golang stealer named “Skuld Stealer”. Skuld Stealer has the capabilities to steal crypto wallets, files, system information, browser data and tokens. Additionally, it contains anti-debugging and anti-VM logic, along with a UAC bypass [11].
Figure 3: A timeline outlining suspicious activity on the device alerted by Darktrace.
Case Study 2
The second case involved a customer within the Education sector. The affected device was also internet-facing, with network traffic indicating it was a WSUS server
Suspicious activity in this case once again began on October 24, notably only a few seconds after initial signs of compromise were observed in the first case. Initial anomalous behaviour also closely aligned, with outbound PowerShell connections to webhook[.]site, and then later connections, including HTTP POSTs, to the same endpoint with a cURL user agent.
While Darktrace did not observe any anomalous network activity on the device after October 24, the customer’s security integration resulted in an additional alert on October 27 for malicious activity, suggesting that the compromise may have continued locally.
By leveraging Darktrace’s security integrations, customers can investigate activity across different sources in a seamless manner, gaining additional insight and context to an attack.
Figure 4: A timeline outlining suspicious activity on the device alerted by Darktrace.
Conclusion
Exploitation of a CVE can lead to a wide range of outcomes. In some cases, it may be limited to just a single device with a focused objective, such as exfiltration of sensitive data. In others, it could lead to lateral movement and a full network compromise, including ransomware deployment. As the threat of internet-facing exploitation continues to grow, security teams must be prepared to defend against such a possibility, regardless of the attack type or scale.
By focussing on detection of anomalous behaviour rather than relying on signatures associated with a specific CVE exploit, Darktrace is able to alert on post-exploitation activity regardless of the kind of behaviour seen. In addition, leveraging security integrations provides further context on activities beyond the visibility of Darktrace / NETWORKTM, enabling defenders to investigate and respond to attacks more effectively.
With adversaries weaponizing even trusted incident response tools, maintaining broad visibility and rapid response capabilities becomes critical to mitigating post-exploitation risk.
Credit to Emma Foulger (Global Threat Research Operations Lead), Tara Gould (Threat Research Lead), Eugene Chua (Principal Cyber Analyst & Analyst Team Lead), Nathaniel Jones (VP, Security & AI Strategy, Field CISO),
o royal-boat-bf05.qgtxtebl.workers[.]dev – Hostname – Likely C2 Infrastructure
o royal-boat-bf05.qgtxtebl.workers[.]dev/v3.msi - URI – Likely payload
o chat.hcqhajfv.workers[.]dev – Hostname – Possible C2 Infrastructure
o 185.69.24[.]18 – IP address – Possible C2 Infrastructure
o 185.69.24[.]18/bin.msi - URI – Likely payload
o 185.69.24[.]18/singapure - URI – Likely payload
The content provided in this blog is published by Darktrace for general informational purposes only and reflects our understanding of cybersecurity topics, trends, incidents, and developments at the time of publication. While we strive to ensure accuracy and relevance, the information is provided “as is” without any representations or warranties, express or implied. Darktrace makes no guarantees regarding the completeness, accuracy, reliability, or timeliness of any information presented and expressly disclaims all warranties.
Nothing in this blog constitutes legal, technical, or professional advice, and readers should consult qualified professionals before acting on any information contained herein. Any references to third-party organizations, technologies, threat actors, or incidents are for informational purposes only and do not imply affiliation, endorsement, or recommendation.
Darktrace, its affiliates, employees, or agents shall not be held liable for any loss, damage, or harm arising from the use of or reliance on the information in this blog.
The cybersecurity landscape evolves rapidly, and blog content may become outdated or superseded. We reserve the right to update, modify, or remove any content