Blog
/
/
August 15, 2022

Modern Cyber War: Our Role in New Cyber-Attacks

Explore the roles we all play in the modern cyber war and how you can protect your digital assets in an evolving threat landscape.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Marcus Fowler
CEO of Darktrace Federal and SVP of Strategic Engagements and Threats
Written by
Sam Corbett
Content Marketing Executive
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
15
Aug 2022

Cyber warfare is increasingly being conducted outside of centralized military or government efforts. In Ukraine, without direct government supervision, thousands of private individuals and organizations are involving themselves in the cyber-war against Russia. Yurii Shchyhol is head of Ukraine’s State Service of Special Communications and Information Protection. Speaking to Politico, he commends a group of “more than 270,000 volunteers who are self-coordinating their efforts and who can decide, plan, and execute any strikes on the Russian cyber infrastructure without Ukraine getting involved in any shape or form.”

‘Hacktivists’ have existed since the 1990s, but the term seems ill-suited to the scale and approach Shchyhol is describing. They might instead be labelled an auxiliary cyber force, playing a supportive role in a larger military effort. Shchyhol himself calls them “an army”. 

Open-source warfare

In the modern cyber landscape, anyone with a computer and a basic skill set can contribute to a war. Depending on who and perhaps where you are, this fact is inspiring, concerning, or a little of both. The challenge of distinguishing between official nation-state attacks and hacktivists raises certain issues, making it possible, for instance, for nation-states to conduct devastating attacks against critical national infrastructure from behind a mask of proxy criminal organizations. The ties between nation states and these organizations may be suspected, but any accusations are rarely confirmed. 

The converse problem is seen when idealistic individual actors launch provocative attacks with the potential to stoke tensions between nation states. Recent DDoS and defacement attacks against Taiwanese government sites and businesses are largely being attributed to Chinese hacktivists, but with the perpetrators unidentified, these attacks remain a concerning question mark and do little to ameliorate sharply rising tensions. A spokesperson for Taiwan’s ruling party has already said in a statement that these attacks are “unilaterally raising the situation in the Taiwan Strait.” Official Taiwanese websites, like that of the Presidential Office, the Ministry of National Defense, and a municipal Environment Protection Bureau have all been targeted, the latter defaced with five Chinese national flags. 

A spate of similar defacements preceded Russia’s February invasion of Ukraine, with more than a dozen Ukrainian national websites made to display threats like, “be afraid and expect the worst”. Once again, the perpetrators of this attack remained unconfirmed, with Ukrainian government institutions accusing the Russian Federation, and Russia denying all involvement. The degree to which modern war efforts can be influenced by – or concealed behind – individual threat actors is a new and disconcerting symptom of the modern cyber landscape. There are, however, more official ways in which cyber warfare has moved beyond government and military organizations as well.

Calling in a private cavalry

Just 15 months after it was opened by President Volodymyr Zelensky, the UA30 Cyber Center in Ukraine lies largely empty. It is located in an unsafe part of the war-torn country, and its operations have had to be moved elsewhere. In the time between its opening and Russia’s invasion in February, however, the center was able to host more than 100 cyber security training sessions. These sessions, which involved realistic cyber-attack simulations, hackathons, and other competitions, were attended by some military operators, but also by large numbers of civilian contractors and private sector representatives. Their attendance was part of an intentional and significant effort to involve the private sector in Ukraine’s cyber defense efforts. 

Shchyhol explains, “a lot of private sector IT cyber security experts are either directly serving in the Armed Forces of Ukraine or my State Service or otherwise are indirectly involved in fighting against cyber-attacks.” This is the realization of the UA30 Cyber Center’s aim: using crucial assistance and expertise from the private sector in national cyber-defense efforts, and bolstering the security of those organizations on which Ukraine’s critical national infrastructure depends. As we have seen with attacks against Ukrainian telecom and internet providers, organizations operating the infrastructure which underpins a population’s daily life are often the first – and most appealing – targets for attackers looking to create disorder within a nation. 

It is not only Ukraine’s own private sector which is lending a hand. International organizations like SpaceX and Amazon have contributed to Ukraine’s efforts by providing technology and infrastructure, as well as their own expertise and services. In its report on Early Lessons from the Cyber War, Microsoft suggests that “defense against a military invasion now requires for most countries the ability to disperse and distribute digital operations and data assets across borders and into other countries”. With cloud services provided by Amazon, Microsoft and others, and data now hosted across Europe, Ukraine is managing to do just that. Like its army of guerilla cyber-fighters, the involvement of private organizations is dispersing and bolstering Ukraine’s war effort.

The new home front

Beyond these direct contributions, however, Shchyhol also notes those private sector organizations supporting the cyber-war “indirectly”. These indirect efforts have been a focus of US government statements on cyber security since the beginning of the conflict. A statement from President Biden in March read, “I urge our private sector partners to harden your cyber defenses immediately”, a message which has been repeated and reinforced by CISA.  

The great responsibility which private organizations have for critical national infrastructure has been highlighted in attacks like that on Colonial Pipeline last year, but organizations in every industry can offer opportunities for nation-state attackers. When more organizations are sufficiently prepared for cyber-attacks, the nation as a whole becomes stronger. 

In its report, Microsoft calls for “a common strategy” to thwart modern cyber-threats, which includes the need for greater public and private collaboration and advances in digital technology, Artificial Intelligence (AI), and data. By adopting stronger defenses, and employing well-suited emerging AI technologies, organizations can accelerate the detection and prevention of threats, and contribute to national security in the face of constantly developing international cyber-threats. 

When cyber-attackers are provided with funding, coordination, and thorough threat security intelligence, they can create scores of never-before-seen attacks, which circumvent pre-established security rules and avoid detection. As attackers develop their approach, so must defenders - not just by employing the latest technologies, but by embracing the changes in defensive strategy which those technologies enable. Defenders need to pivot away from focusing on patterns and predictions, and concentrate on understanding the landscapes and ‘normal’ operations of their digital environments. With this approach they can harden attack paths, visualize their internet-facing attack surface, detect the smallest deviations from ‘normal’, and disrupt attackers before damage is done.  

For private sector organizations, auxiliary cyber forces, and hacktivists alike, focusing on defensive rather than offensive action will be the surest way to win the battle and the war. 

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Marcus Fowler
CEO of Darktrace Federal and SVP of Strategic Engagements and Threats
Written by
Sam Corbett
Content Marketing Executive

More in this series

No items found.

Blog

/

Email

/

December 18, 2025

Why organizations are moving to label-free, behavioral DLP for outbound email

Man at laptopDefault blog imageDefault blog image

Why outbound email DLP needs reinventing

In 2025, the global average cost of a data breach fell slightly — but remains substantial at USD 4.44 million (IBM Cost of a Data Breach Report 2025). The headline figure hides a painful reality: many of these breaches stem not from sophisticated hacks, but from simple human error: mis-sent emails, accidental forwarding, or replying with the wrong attachment. Because outbound email is a common channel for sensitive data leaving an organization, the risk posed by everyday mistakes is enormous.

In 2025, 53% of data breaches involved customer PII, making it the most commonly compromised asset (IBM Cost of a Data Breach Report 2025). This makes “protection at the moment of send” essential. A single unintended disclosure can trigger compliance violations, regulatory scrutiny, and erosion of customer trust –consequences that are disproportionate to the marginal human errors that cause them.

Traditional DLP has long attempted to mitigate these impacts, but it relies heavily on perfect labelling and rigid pattern-matching. In reality, data loss rarely presents itself as a neat, well-structured pattern waiting to be caught – it looks like everyday communication, just slightly out of context.

How data loss actually happens

Most data loss comes from frustratingly familiar scenarios. A mistyped name in auto-complete sends sensitive data to the wrong “Alex.” A user forwards a document to a personal Gmail account “just this once.” Someone shares an attachment with a new or unknown correspondent without realizing how sensitive it is.

Traditional, content-centric DLP rarely catches these moments. Labels are missing or wrong. Regexes break the moment the data shifts formats. And static rules can’t interpret the context that actually matters – the sender-recipient relationship, the communication history, or whether this behavior is typical for the user.

It’s the everyday mistakes that hurt the most. The classic example: the Friday 5:58 p.m. mis-send, when auto-complete selects Martin, a former contractor, instead of Marta in Finance.

What traditional DLP approaches offer (and where gaps remain)

Most email DLP today follows two patterns, each useful but incomplete.

  • Policy- and label-centric DLP works when labels are correct — but content is often unlabeled or mislabeled, and maintaining classification adds friction. Gaps appear exactly where users move fastest
  • Rule and signature-based approaches catch known patterns but miss nuance: human error, new workflows, and “unknown unknowns” that don’t match a rule

The takeaway: Protection must combine content + behavior + explainability at send time, without depending on perfect labels.

Your technology primer: The three pillars that make outbound DLP effective

1) Label-free (vs. data classification)

Protects all content, not just what’s labeled. Label-free analysis removes classification overhead and closes gaps from missing or incorrect tags. By evaluating content and context at send time, it also catches misdelivery and other payload-free errors.

  • No labeling burden; no regex/rule maintenance
  • Works when tags are missing, wrong, or stale
  • Detects misdirected sends even when labels look right

2) Behavioral (vs. rules, signatures, threat intelligence)

Understands user behavior, not just static patterns. Behavioral analysis learns what’s normal for each person, surfacing human error and subtle exfiltration that rules can’t. It also incorporates account signals and inbound intel, extending across email and Teams.

  • Flags risk without predefined rules or IOCs
  • Catches misdelivery, unusual contacts, personal forwards, odd timing/volume
  • Blends identity and inbound context across channels

3) Proprietary DSLM (vs. generic LLM)

Optimized for precise, fast, explainable on-send decisions. A DSLM understands email/DLP semantics, avoids generative risks, and stays auditable and privacy-controlled, delivering intelligence reliably without slowing mail flow.

  • Low-latency, on-send enforcement
  • Non-generative for predictable, explainable outcomes
  • Governed model with strong privacy and auditability

The Darktrace approach to DLP

Darktrace / EMAIL – DLP stops misdelivery and sensitive data loss at send time using hold/notify/justify/release actions. It blends behavioral insight with content understanding across 35+ PII categories, protecting both labeled and unlabeled data. Every action is paired with clear explainability: AI narratives show exactly why an email was flagged, supporting analysts and helping end-users learn. Deployment aligns cleanly with existing SOC workflows through mail-flow connectors and optional Microsoft Purview label ingestion, without forcing duplicate policy-building.

Deployment is simple: Microsoft 365 routes outbound mail to Darktrace for real-time, inline decisions without regex or rule-heavy setup.

A buyer’s checklist for DLP solutions

When choosing your DLP solution, you want to be sure that it can deliver precise, explainable protection at the moment it matters – on send – without operational drag.  

To finish, we’ve compiled a handy list of questions you can ask before choosing an outbound DLP solution:

  • Can it operate label free when tags are missing or wrong? 
  • Does it truly learn per user behavior (no shortcuts)? 
  • Is there a domain specific model behind the content understanding (not a generic LLM)? 
  • Does it explain decisions to both analysts and end users? 
  • Will it integrate with your label program and SOC workflows rather than duplicate them? 

For a deep dive into Darktrace’s DLP solution, check out the full solution brief.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

Email

/

December 17, 2025

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with Darktrace

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with DarktraceDefault blog imageDefault blog image

What is an Adversary-in-the-middle (AiTM) attack?

Adversary-in-the-Middle (AiTM) attacks are a sophisticated technique often paired with phishing campaigns to steal user credentials. Unlike traditional phishing, which multi-factor authentication (MFA) increasingly mitigates, AiTM attacks leverage reverse proxy servers to intercept authentication tokens and session cookies. This allows attackers to bypass MFA entirely and hijack active sessions, stealthily maintaining access without repeated logins.

This blog examines a real-world incident detected during a Darktrace customer trial, highlighting how Darktrace / EMAILTM and Darktrace / IDENTITYTM identified the emerging compromise in a customer’s email and software-as-a-service (SaaS) environment, tracked its progression, and could have intervened at critical moments to contain the threat had Darktrace’s Autonomous Response capability been enabled.

What does an AiTM attack look like?

Inbound phishing email

Attacks typically begin with a phishing email, often originating from the compromised account of a known contact like a vendor or business partner. These emails will often contain malicious links or attachments leading to fake login pages designed to spoof legitimate login platforms, like Microsoft 365, designed to harvest user credentials.

Proxy-based credential theft and session hijacking

When a user clicks on a malicious link, they are redirected through an attacker-controlled proxy that impersonates legitimate services.  This proxy forwards login requests to Microsoft, making the login page appear legitimate. After the user successfully completes MFA, the attacker captures credentials and session tokens, enabling full account takeover without the need for reauthentication.

Follow-on attacks

Once inside, attackers will typically establish persistence through the creation of email rules or registering OAuth applications. From there, they often act on their objectives, exfiltrating sensitive data and launching additional business email compromise (BEC) campaigns. These campaigns can include fraudulent payment requests to external contacts or internal phishing designed to compromise more accounts and enable lateral movement across the organization.

Darktrace’s detection of an AiTM attack

At the end of September 2025, Darktrace detected one such example of an AiTM attack on the network of a customer trialling Darktrace / EMAIL and Darktrace / IDENTITY.

In this instance, the first indicator of compromise observed by Darktrace was the creation of a malicious email rule on one of the customer’s Office 365 accounts, suggesting the account had likely already been compromised before Darktrace was deployed for the trial.

Darktrace / IDENTITY observed the account creating a new email rule with a randomly generated name, likely to hide its presence from the legitimate account owner. The rule marked all inbound emails as read and deleted them, while ignoring any existing mail rules on the account. This rule was likely intended to conceal any replies to malicious emails the attacker had sent from the legitimate account owner and to facilitate further phishing attempts.

Darktrace’s detection of the anomalous email rule creation.
Figure 1: Darktrace’s detection of the anomalous email rule creation.

Internal and external phishing

Following the creation of the email rule, Darktrace / EMAIL observed a surge of suspicious activity on the user’s account. The account sent emails with subject lines referencing payment information to over 9,000 different external recipients within just one hour. Darktrace also identified that these emails contained a link to an unusual Google Drive endpoint, embedded in the text “download order and invoice”.

Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Figure 2: Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.
Figure 3: Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.

As Darktrace / EMAIL flagged the message with the ‘Compromise Indicators’ tag (Figure 2), it would have been held automatically if the customer had enabled default Data Loss Prevention (DLP) Action Flows in their email environment, preventing any external phishing attempts.

Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.
Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.

Darktrace analysis revealed that, after clicking the malicious link in the email, recipients would be redirected to a convincing landing page that closely mimicked the customer’s legitimate branding, including authentic imagery and logos, where prompted to download with a PDF named “invoice”.

Figure 5: Download and login prompts presented to recipients after following the malicious email link, shown here in safe view.

After clicking the “Download” button, users would be prompted to enter their company credentials on a page that was likely a credential-harvesting tool, designed to steal corporate login details and enable further compromise of SaaS and email accounts.

Darktrace’s Response

In this case, Darktrace’s Autonomous Response was not fully enabled across the customer’s email or SaaS environments, allowing the compromise to progress,  as observed by Darktrace here.

Despite this, Darktrace / EMAIL’s successful detection of the malicious Google Drive link in the internal phishing emails prompted it to suggest ‘Lock Link’, as a recommended action for the customer’s security team to manually apply. This action would have automatically placed the malicious link behind a warning or screening page blocking users from visiting it.

Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.
Figure 6: Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.

Furthermore, if active in the customer’s SaaS environment, Darktrace would likely have been able to mitigate the threat even earlier, at the point of the first unusual activity: the creation of a new email rule. Mitigative actions would have included forcing the user to log out, terminating any active sessions, and disabling the account.

Conclusion

AiTM attacks represent a significant evolution in credential theft techniques, enabling attackers to bypass MFA and hijack active sessions through reverse proxy infrastructure. In the real-world case we explored, Darktrace’s AI-driven detection identified multiple stages of the attack, from anomalous email rule creation to suspicious internal email activity, demonstrating how Autonomous Response could have contained the threat before escalation.

MFA is a critical security measure, but it is no longer a silver bullet. Attackers are increasingly targeting session tokens rather than passwords, exploiting trusted SaaS environments and internal communications to remain undetected. Behavioral AI provides a vital layer of defense by spotting subtle anomalies that traditional tools often miss

Security teams must move beyond static defenses and embrace adaptive, AI-driven solutions that can detect and respond in real time. Regularly review SaaS configurations, enforce conditional access policies, and deploy technologies that understand “normal” behavior to stop attackers before they succeed.

Credit to David Ison (Cyber Analyst), Bertille Pierron (Solutions Engineer), Ryan Traill (Analyst Content Lead)

Appendices

Models

SaaS / Anomalous New Email Rule

Tactic – Technique – Sub-Technique  

Phishing - T1566

Adversary-in-the-Middle - T1557

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI