Blog
/
/
May 3, 2021

Understanding Modern-Day Cyber Attacks

Discover how Darktrace detects and mitigates threats in IoT ecosystems and globalized supply chains that are constantly evolving.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Brianna Leddy
Director of Analyst Operations
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
03
May 2021

It’s ten to five on a Friday afternoon. A technician has come in to perform a routine check on an electronic door. She enters the office with no issues – she works for a trusted third-party vendor, employees see her every week. She opens her laptop and connects to the Door Access Control Unit, a small Internet of Things (IoT) device used to operate the smart lock. Minutes later, trojans have been downloaded onto the company network, a crypto-mining operation has begun, and there is evidence of confidential data being exfiltrated. Where did things go wrong?

Threats in a business: A new dawn surfaces

As organizations keep pace with the demands of digital transformation, the attack surface has become broader than ever before. There are numerous points of entry for a cyber-criminal – from vulnerabilities in IoT ecosystems, to blind spots in supply chains, to insiders misusing their access to the business. Darktrace sees these threats every day. Sometimes, like in the real-world example above, which will be examined in this blog, they can occur in the very same attack.

Insider threats can use their familiarity and level of access to a system as a critical advantage when evading detection and launching an attack. But insiders don’t necessarily have to be malicious. Every employee or contractor is a potential threat: clicking on a phishing link or accidentally releasing data often leads to wide-scale breaches.

At the same time, connectivity in the workspace – with each IoT device communicating with the corporate network and the Internet on its own IP address – is an urgent security issue. Access control systems, for example, add a layer of physical security by tracking who enters the office and when. However, these same control systems imperil digital security by introducing a cluster of sensors, locks, alarm systems, and keypads, which hold sensitive user information and connect to company infrastructure.

Furthermore, a significant proportion of IoT devices are built without security in mind. Vendors prioritize time-to-market and often don’t have the resources to invest in baked-in security measures. Consider the number of start-ups which manufacture IoT – over 60% of home automation companies have fewer than ten employees.

Insider threat detected by Cyber AI

In January 2021, a medium-sized North American company suffered a supply chain attack when a third-party vendor connected to the control unit for a smart door.

Figure 1: The attack lasted 3.5 hours in total, commencing 16:50 local time.

The technician from the vendor’s company had come in to perform scheduled maintenance. They had been authorized to connect directly to the Door Access Control Unit, yet were unaware that the laptop they were using, brought in from outside of the organization, had been infected with malware.

As soon as the laptop connected with the control unit, the malware detected an open port, identified the vulnerability, and began moving laterally. Within minutes, the IoT device was seen making highly unusual connections to rare external IP addresses. The connections were made using HTTP and contained suspicious user agents and URIs.

Darktrace then detected that the control unit was attempting to download trojans and other payloads, including upsupx2.exe and 36BB9658.moe. Other connections were used to send base64 encoded strings containing the device name and the organization’s external IP address.

Cryptocurrency mining activity with a Monero (XMR) CPU miner was detected shortly afterwards. The device also utilized an SMB exploit to make external connections on port 445 while searching for vulnerable internal devices using the outdated SMBv1 protocol.

One hour later, the device connected to an endpoint related to the third-party remote access tool TeamViewer. After a few minutes, the device was seen uploading over 15 MB to a 100% rare external IP.

Figure 2: Timeline of the connections made by an example device on the days around an incident (blue). The connections associated with the compromise are a significant deviation from the device’s normal pattern of life, and result in multiple unusual activity events and repeated model breaches (orange).

Security threats in the supply chain

Cyber AI flagged the insider threat to the customer as soon as the control unit had been compromised. The attack had managed to bypass the rest of the organization’s security stack, for the simple reason that it was introduced directly from a trusted external laptop, and the IoT device itself was managed by the third-party vendor, so the customer had little visibility over it.

Traditional security tools are ineffective against supply chain attacks such as this. From the SolarWinds hack to Vendor Email Compromise, 2021 has put the nail in the coffin for signature-based security – proving that we cannot rely on yesterday’s attacks to predict tomorrow’s threats.

International supply chains and the sheer number of different partners and suppliers which modern organizations work with thus pose a serious security dilemma: how can we allow external vendors onto our network and keep an airtight system?

The first answer is zero-trust access. This involves treating every device as malicious, inside and outside the corporate network, and demanding verification at all stages. The second answer is visibility and response. Security products must shed a clear light into cloud and IoT infrastructure, and react autonomously as soon as subtle anomalies emerge across the enterprise.

IoT investigated

Darktrace’s Cyber AI Analyst reported on every stage of the attack, including the download of the first malicious executable file.

Figure 3: Example of Cyber AI Analyst detecting anomalous behavior on a device, including C2 connectivity and suspicious file downloads.

Cyber AI Analyst investigated the C2 connectivity, providing a high-level summary of the activity. The IoT device had accessed suspicious MOE files with randomly generated alphanumeric names.

Figure 4: A Cyber AI Analyst summary of C2 connectivity for a device.

Not only did the AI detect every stage of the activity, but the customer was also alerted via a Proactive Threat Notification following a high scoring model breach at 16:59, just minutes after the attack had commenced.

Stranger danger

Third parties coming in to tweak device settings and adjust the network can have unintended consequences. The hyper-connected world which we’re living in, with the advent of 5G and Industry 4.0, has become a digital playground for cyber-criminals.

In the real-world case study above, the IoT device was unsecured and misconfigured. With rushed creations of IoT ecosystems, intertwining supply chains, and a breadth of individuals and devices connecting to corporate infrastructure, modern-day organizations cannot expect simple security tools which rely on pre-defined rules to stop insider threats and other advanced cyber-attacks.

The organization did not have visibility over the management of the Door Access Control Unit. Despite this, and despite no prior knowledge of the attack type or the vulnerabilities present in the IoT device, Darktrace detected the behavioral anomalies immediately. Without Cyber AI, the infection could have remained on the customer’s environment for weeks or months, escalating privileges, silently crypto-mining, and exfiltrating sensitive company data.

Thanks to Darktrace analyst Grace Carballo for her insights on the above threat find.

Learn more about insider threats

Darktrace model detections:

  • Anomalous File/Anomalous Octet Stream
  • Anomalous Connection/New User Agent to IP Without Hostname
  • Unusual Activity/Unusual External Connectivity
  • Device/Increased External Connectivity
  • Anomalous Server Activity/Outgoing from Server
  • Device/New User Agent and New IP
  • Compliance/Cryptocurrency Mining Activity
  • Compliance/External Windows Connectivity
  • Anomalous File/Multiple EXE from Rare External Locations
  • Anomalous File/EXE from Rare External Location
  • Device/Large Number of Model Breaches
  • Anomalous File/Internet Facing System File Download
  • Device/Initial Breach Chain Compromise
  • Device/SMB Session Bruteforce
  • Device/Network Scan- Low Anomaly Score
  • Device/Large Number of Connections to New Endpoint
  • Anomalous Server Activity/Outgoing from Server
  • Compromise/Beacon to Young Endpoint
  • Anomalous Server Activity/Rare External from Server
  • Device/Multiple C2 Model Breaches
  • Compliance/Remote Management Tool on Server
  • Anomalous Connection/Data Sent to New External Device

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Brianna Leddy
Director of Analyst Operations

More in this series

No items found.

Blog

/

Proactive Security

/

January 7, 2026

How a leading bank is prioritizing risk management to power a resilient future

Default blog imageDefault blog image

As one of the region’s most established financial institutions, this bank sits at the heart of its community’s economic life – powering everything from daily transactions to business growth and long-term wealth planning. Its blend of physical branches and advanced digital services gives customers the convenience they expect and the personal trust they rely on. But as the financial world becomes more interconnected and adversaries more sophisticated, safeguarding that trust requires more than traditional cybersecurity. It demands a resilient, forward-leaning approach that keeps pace with rising threats and tightening regulatory standards.

A complex risk landscape demands a new approach

The bank faced a challenge familiar across the financial sector: too many tools, not enough clarity. Vulnerability scans, pen tests, and risk reports all produced data, yet none worked together to show how exposures connected across systems or what they meant for day-to-day operations. Without a central platform to link and contextualize this data, teams struggled to see how individual findings translated into real exposure across the business.

  • Fragmented risk assessments: Cyber and operational risks were evaluated in silos, often duplicated across teams, and lacked the context needed to prioritize what truly mattered.
  • Limited executive visibility: Leadership struggled to gain a complete, real-time view of trends or progress, making risk ownership difficult to enforce.
  • Emerging compliance pressure: This gap also posed compliance challenges under the EU’s Digital Operational Resilience Act (DORA), which requires financial institutions to demonstrate continuous oversight, effective reporting, and the ability to withstand and recover from cyber and IT disruptions.
“The issue wasn’t the lack of data,” recalls the bank’s Chief Technology Officer. “The challenge was transforming that data into a unified, contextualized picture we could act on quickly and decisively.”

As the bank advanced its digital capabilities and embraced cloud services, its risk environment became more intricate. New pathways for exploitation emerged, human factors grew harder to quantify, and manual processes hindered timely decision-making. To maintain resilience, the security team sought a proactive, AI-powered platform that could consolidate exposures, deliver continuous insight, and ensure high-value risks were addressed before they escalated.

Choosing Darktrace to unlock proactive cyber resilience

To reclaim control over its fragmented risk landscape, the bank selected Darktrace / Proactive Exposure Management™ for cyber risk insight. The solution’s ability to consolidate scanner outputs, pen test results, CVE data, and operational context into one AI-powered view made it the clear choice. Darktrace delivered comprehensive visibility the team had long been missing.

By shifting from a reactive model to proactive security, the bank aimed to:

  • Improve resilience and compliance with DORA
  • Prioritize remediation efforts with greater accuracy
  • Eliminate duplicated work across teams
  • Provide leadership with a complete view of risk, updated continuously
  • Reduce the overall likelihood of attack or disruption

The CTO explains: “We needed a solution that didn’t just list vulnerabilities but showed us what mattered most for our business – how risks connected, how they could be exploited, and what actions would create the biggest reduction in exposure. Darktrace gave us that clarity.”

Targeting the risks that matter most

Darktrace / Proactive Exposure Management offered the bank a new level of visibility and control by continuously analyzing misconfigurations, critical attack paths, human communication patterns, and high-value assets. Its AI-driven risk scoring allowed the team to understand which vulnerabilities had meaningful business impact, not just which were technically severe.

Unifying exposure across architectures

Darktrace aggregates and contextualizes data from across the bank’s security stack, eliminating the need to manually compile or correlate findings. What once required hours of cross-team coordination now appears in a single, continuously updated dashboard.

Revealing an adversarial view of risk

The solution maps multi-stage, complex attack paths across network, cloud, identity systems, email environments, and endpoints – highlighting risks that traditional CVE lists overlook.

Identifying misconfigurations and controlling gaps

Using Self-Learning AI, Darktrace / Proactive Exposure Management spots misconfigurations and prioritizes them based on MITRE adversary techniques, business context, and the bank’s unique digital environment.

Enhancing red-team and pen test effectiveness

By directing testers to the highest-value targets, Darktrace removes guesswork and validates whether defenses hold up against realistic adversarial behavior.

Supporting DORA compliance

From continuous monitoring to executive-ready reporting, the solution provides the transparency and accountability the bank needs to demonstrate operational resilience frameworks.

Proactive security delivers tangible outcomes

Since deploying Darktrace / Proactive Exposure Management, the bank has significantly strengthened its cybersecurity posture while improving operational efficiency.

Greater insight, smarter prioritization, stronger defensee

Security teams are now saving more than four hours per week previously spent aggregating and analyzing risk data. With a unified view of their exposure, they can focus directly on remediation instead of manually correlating multiple reports.

Because risks are now prioritized based on business impact and real-time operational context, they no longer waste time on low-value tasks. Instead, critical issues are identified and resolved sooner, reducing potential windows for exploitation and strengthening the bank’s ongoing resilience against both known and emerging threats.

“Our goal was to move from reactive to proactive security,” the CTO says. “Darktrace didn’t just help us achieve that, it accelerated our roadmap. We now understand our environment with a level of clarity we simply didn’t have before.”

Leadership clarity and stronger governance

Executives and board stakeholders now receive clear, organization-wide visibility into the bank’s risk posture, supported by consistent reporting that highlights trends, progress, and areas requiring attention. This transparency has strengthened confidence in the bank’s cyber resilience and enabled leadership to take true ownership of risk across the institution.

Beyond improved visibility, the bank has also deepened its overall governance maturity. Continuous monitoring and structured oversight allow leaders to make faster, more informed decisions that strategically align security efforts with business priorities. With a more predictable understanding of exposure and risk movement over time, the organization can maintain operational continuity, demonstrate accountability, and adapt more effectively as regulatory expectations evolve.

Trading stress for control

With Darktrace, leaders now have the clarity and confidence they need to report to executives and regulators with accuracy. The ability to see organization-wide risk in context provides assurance that the right issues are being addressed at the right time. That clarity is also empowering security analysts who no longer shoulder the anxiety of wondering which risks matter most or whether something critical has slipped through the cracks. Instead, they’re working with focus and intention, redirecting hours of manual effort into strategic initiatives that strengthen the bank’s overall resilience.

Prioritizing risk to power a resilient future

For this leading financial institution, Darktrace / Proactive Exposure Management has become the foundation for a more unified, data-driven, and resilient cybersecurity program. With clearer, business-relevant priorities, stronger oversight, and measurable efficiency gains, the bank has strengthened its resilience and met demanding regulatory expectations without adding operational strain.

Most importantly, it shifted the bank’s security posture from a reactive stance to a proactive, continuous program. Giving teams the confidence and intelligence to anticipate threats and safeguard the people and services that depend on them.

Continue reading
About the author
Kelland Goodin
Product Marketing Specialist

Blog

/

AI

/

January 5, 2026

How to Secure AI in the Enterprise: A Practical Framework for Models, Data, and Agents

How to secure AI in the enterprise: A practical framework for models, data, and agents Default blog imageDefault blog image

Introduction: Why securing AI is now a security priority

AI adoption is at the forefront of the digital movement in businesses, outpacing the rate at which IT and security professionals can set up governance models and security parameters. Adopting Generative AI chatbots, autonomous agents, and AI-enabled SaaS tools promises efficiency and speed but also introduces new forms of risk that traditional security controls were never designed to manage. For many organizations, the first challenge is not whether AI should be secured, but what “securing AI” actually means in practice. Is it about protecting models? Governing data? Monitoring outputs? Or controlling how AI agents behave once deployed?  

While demand for adoption increases, securing AI use in the enterprise is still an abstract concept to many and operationalizing its use goes far beyond just having visibility. Practitioners need to also consider how AI is sourced, built, deployed, used, and governed across the enterprise.

The goal for security teams: Implement a clear, lifecycle-based AI security framework. This blog will demonstrate the variety of AI use cases that should be considered when developing this framework and how to frame this conversation to non-technical audiences.  

What does “securing AI” actually mean?

Securing AI is often framed as an extension of existing security disciplines. In practice, this assumption can cause confusion.

Traditional security functions are built around relatively stable boundaries. Application security focuses on code and logic. Cloud security governs infrastructure and identity. Data security protects sensitive information at rest and in motion. Identity security controls who can access systems and services. Each function has clear ownership, established tooling, and well-understood failure modes.

AI does not fit neatly into any of these categories. An AI system is simultaneously:

  • An application that executes logic
  • A data processor that ingests and generates sensitive information
  • A decision-making layer that influences or automates actions
  • A dynamic system that changes behavior over time

As a result, the security risks introduced by AI cuts across multiple domains at once. A single AI interaction can involve identity misuse, data exposure, application logic abuse, and supply chain risk all within the same workflow. This is where the traditional lines between security functions begin to blur.

For example, a malicious prompt submitted by an authorized user is not a classic identity breach, yet it can trigger data leakage or unauthorized actions. An AI agent calling an external service may appear as legitimate application behavior, even as it violates data sovereignty or compliance requirements. AI-generated code may pass standard development checks while introducing subtle vulnerabilities or compromised dependencies.

In each case, no single security team “owns” the risk outright.

This is why securing AI cannot be reduced to model safety, governance policies, or perimeter controls alone. It requires a shared security lens that spans development, operations, data handling, and user interaction. Securing AI means understanding not just whether systems are accessed securely, but whether they are being used, trained, and allowed to act in ways that align with business intent and risk tolerance.

At its core, securing AI is about restoring clarity in environments where accountability can quickly blur. It is about knowing where AI exists, how it behaves, what it is allowed to do, and how its decisions affect the wider enterprise. Without this clarity, AI becomes a force multiplier for both productivity and risk.

The five categories of AI risk in the enterprise

A practical way to approach AI security is to organize risk around how AI is used and where it operates. The framework below defines five categories of AI risk, each aligned to a distinct layer of the enterprise AI ecosystem  

How to Secure AI in the Enterprise:

  • Defending against misuse and emergent behaviors
  • Monitoring and controlling AI in operation
  • Protecting AI development and infrastructure
  • Securing the AI supply chain
  • Strengthening readiness and oversight

Together, these categories provide a structured lens for understanding how AI risk manifests and where security teams should focus their efforts.

1. Defending against misuse and emergent AI behaviors

Generative AI systems and agents can be manipulated in ways that bypass traditional controls. Even when access is authorized, AI can be misused, repurposed, or influenced through carefully crafted prompts and interactions.

Key risks include:

  • Malicious prompt injection designed to coerce unwanted actions
  • Unauthorized or unintended use cases that bypass guardrails
  • Exposure of sensitive data through prompt histories
  • Hallucinated or malicious outputs that influence human behavior

Unlike traditional applications, AI systems can produce harmful outcomes without being explicitly compromised. Securing this layer requires monitoring intent, not just access. Security teams need visibility into how AI systems are being prompted, how outputs are consumed, and whether usage aligns with approved business purposes

2. Monitoring and controlling AI in operation

Once deployed, AI agents operate at machine speed and scale. They can initiate actions, exchange data, and interact with other systems with little human oversight. This makes runtime visibility critical.

Operational AI risks include:

  • Agents using permissions in unintended ways
  • Uncontrolled outbound connections to external services or agents
  • Loss of forensic visibility into ephemeral AI components
  • Non-compliant data transmission across jurisdictions

Securing AI in operation requires real-time monitoring of agent behavior, centralized control points such as AI gateways, and the ability to capture agent state for investigation. Without these capabilities, security teams may be blind to how AI systems behave once live, particularly in cloud-native or regulated environments.

3. Protecting AI development and infrastructure

Many AI risks are introduced long before deployment. Development pipelines, infrastructure configurations, and architectural decisions all influence the security posture of AI systems.

Common risks include:

  • Misconfigured permissions and guardrails
  • Insecure or overly complex agent architectures
  • Infrastructure-as-Code introducing silent misconfigurations
  • Vulnerabilities in AI-generated code and dependencies

AI-generated code adds a new dimension of risk, as hallucinated packages or insecure logic may be harder to detect and debug than human-written code. Securing AI development means applying security controls early, including static analysis, architectural review, and continuous configuration monitoring throughout the build process.

4. Securing the AI supply chain

AI supply chains are often opaque. Models, datasets, dependencies, and services may come from third parties with varying levels of transparency and assurance.

Key supply chain risks include:

  • Shadow AI tools used outside approved controls
  • External AI agents granted internal access
  • Suppliers applying AI to enterprise data without disclosure
  • Compromised models, training data, or dependencies

Securing the AI supply chain requires discovering where AI is used, validating the provenance and licensing of models and data, and assessing how suppliers process and protect enterprise information. Without this visibility, organizations risk data leakage, regulatory exposure, and downstream compromise through trusted integrations.

5. Strengthening readiness and oversight

Even with strong technical controls, AI security fails without governance, testing, and trained teams. AI introduces new incident scenarios that many security teams are not yet prepared to handle.

Oversight risks include:

  • Lack of meaningful AI risk reporting
  • Untested AI systems in production
  • Security teams untrained in AI-specific threats

Organizations need AI-aware reporting, red and purple team exercises that include AI systems, and ongoing training to build operational readiness. These capabilities ensure AI risks are understood, tested, and continuously improved, rather than discovered during a live incident.

Reframing AI security for the boardroom

AI security is not just a technical issue. It is a trust, accountability, and resilience issue. Boards want assurance that AI-driven decisions are reliable, explainable, and protected from tampering.

Effective communication with leadership focuses on:

  • Trust: confidence in data integrity, model behavior, and outputs
  • Accountability: clear ownership across teams and suppliers
  • Resilience: the ability to operate, audit, and adapt under attack or regulation

Mapping AI security efforts to recognized frameworks such as ISO/IEC 42001 and the NIST AI Risk Management Framework helps demonstrate maturity and aligns AI security with broader governance objectives.

Conclusion: Securing AI is a lifecycle challenge

The same characteristics that make AI transformative also make it difficult to secure. AI systems blur traditional boundaries between software, users, and decision-making, expanding the attack surface in subtle but significant ways.

Securing AI requires restoring clarity. Knowing where AI exists, how it behaves, who controls it, and how it is governed. A framework-based approach allows organizations to innovate with AI while maintaining trust, accountability, and control.

The journey to secure AI is ongoing, but it begins with understanding the risks across the full AI lifecycle and building security practices that evolve alongside the technology.

Continue reading
About the author
Brittany Woodsmall
Product Marketing Manager, AI
Your data. Our AI.
Elevate your network security with Darktrace AI