Blog
/
Network
/
April 17, 2024

Sliver C2: How Darktrace Provided a Sliver of Hope

Learn how Darktrace is tackling the challenges posed by the Sliver C2 framework and what it means for modern cybersecurity defenses.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Natalia Sánchez Rocafort
Cyber Security Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
17
Apr 2024

Offensive Security Tools

As organizations globally seek to for ways to bolster their digital defenses and safeguard their networks against ever-changing cyber threats, security teams are increasingly adopting offensive security tools to simulate cyber-attacks and assess the security posture of their networks. These legitimate tools, however, can sometimes be exploited by real threat actors and used as genuine actor vectors.

What is Sliver C2?

Sliver C2 is a legitimate open-source command-and-control (C2) framework that was released in 2020 by the security organization Bishop Fox. Silver C2 was originally intended for security teams and penetration testers to perform security tests on their digital environments [1] [2] [5]. In recent years, however, the Sliver C2 framework has become a popular alternative to Cobalt Strike and Metasploit for many attackers and Advanced Persistence Threat (APT) groups who adopt this C2 framework for unsolicited and ill-intentioned activities.

The use of Sliver C2 has been observed in conjunction with various strains of Rust-based malware, such as KrustyLoader, to provide backdoors enabling lines of communication between attackers and their malicious C2 severs [6]. It is unsurprising, then, that it has also been leveraged to exploit zero-day vulnerabilities, including critical vulnerabilities in the Ivanti Connect Secure and Policy Secure services.

In early 2024, Darktrace observed the malicious use of Sliver C2 during an investigation into post-exploitation activity on customer networks affected by the Ivanti vulnerabilities. Fortunately for affected customers, Darktrace DETECT™ was able to recognize the suspicious network-based connectivity that emerged alongside Sliver C2 usage and promptly brought it to the attention of customer security teams for remediation.

How does Silver C2 work?

Given its open-source nature, the Sliver C2 framework is extremely easy to access and download and is designed to support multiple operating systems (OS), including MacOS, Windows, and Linux [4].

Sliver C2 generates implants (aptly referred to as ‘slivers’) that operate on a client-server architecture [1]. An implant contains malicious code used to remotely control a targeted device [5]. Once a ‘sliver’ is deployed on a compromised device, a line of communication is established between the target device and the central C2 server. These connections can then be managed over Mutual TLS (mTLS), WireGuard, HTTP(S), or DNS [1] [4]. Sliver C2 has a wide-range of features, which include dynamic code generation, compile-time obfuscation, multiplayer-mode, staged and stageless payloads, procedurally generated C2 over HTTP(S) and DNS canary blue team detection [4].

Why Do Attackers Use Sliver C2?

Amidst the multitude of reasons why malicious actors opt for Sliver C2 over its counterparts, one stands out: its relative obscurity. This lack of widespread recognition means that security teams may overlook the threat, failing to actively search for it within their networks [3] [5].

Although the presence of Sliver C2 activity could be representative of authorized and expected penetration testing behavior, it could also be indicative of a threat actor attempting to communicate with its malicious infrastructure, so it is crucial for organizations and their security teams to identify such activity at the earliest possible stage.

Darktrace’s Coverage of Sliver C2 Activity

Darktrace’s anomaly-based approach to threat detection means that it does not explicitly attempt to attribute or distinguish between specific C2 infrastructures. Despite this, Darktrace was able to connect Sliver C2 usage to phases of an ongoing attack chain related to the exploitation of zero-day vulnerabilities in Ivanti Connect Secure VPN appliances in January 2024.

Around the time that the zero-day Ivanti vulnerabilities were disclosed, Darktrace detected an internal server on one customer network deviating from its expected pattern of activity. The device was observed making regular connections to endpoints associated with Pulse Secure Cloud Licensing, indicating it was an Ivanti server. It was observed connecting to a string of anomalous hostnames, including ‘cmjk3d071amc01fu9e10ae5rt9jaatj6b.oast[.]live’ and ‘cmjft14b13vpn5vf9i90xdu6akt5k3pnx.oast[.]pro’, via HTTP using the user agent ‘curl/7.19.7 (i686-redhat-linux-gnu) libcurl/7.63.0 OpenSSL/1.0.2n zlib/1.2.7’.

Darktrace further identified that the URI requested during these connections was ‘/’ and the top-level domains (TLDs) of the endpoints in question were known Out-of-band Application Security Testing (OAST) server provider domains, namely ‘oast[.]live’ and ‘oast[.]pro’. OAST is a testing method that is used to verify the security posture of an application by testing it for vulnerabilities from outside of the network [7]. This activity triggered the DETECT model ‘Compromise / Possible Tunnelling to Bin Services’, which breaches when a device is observed sending DNS requests for, or connecting to, ‘request bin’ services. Malicious actors often abuse such services to tunnel data via DNS or HTTP requests. In this specific incident, only two connections were observed, and the total volume of data transferred was relatively low (2,302 bytes transferred externally). It is likely that the connections to OAST servers represented malicious actors testing whether target devices were vulnerable to the Ivanti exploits.

The device proceeded to make several SSL connections to the IP address 103.13.28[.]40, using the destination port 53, which is typically reserved for DNS requests. Darktrace recognized that this activity was unusual as the offending device had never previously been observed using port 53 for SSL connections.

Model Breach Event Log displaying the ‘Application Protocol on Uncommon Port’ DETECT model breaching in response to the unusual use of port 53.
Figure 1: Model Breach Event Log displaying the ‘Application Protocol on Uncommon Port’ DETECT model breaching in response to the unusual use of port 53.

Figure 2: Model Breach Event Log displaying details pertaining to the ‘Application Protocol on Uncommon Port’ DETECT model breach, including the 100% rarity of the port usage.
Figure 2: Model Breach Event Log displaying details pertaining to the ‘Application Protocol on Uncommon Port’ DETECT model breach, including the 100% rarity of the port usage.

Further investigation into the suspicious IP address revealed that it had been flagged as malicious by multiple open-source intelligence (OSINT) vendors [8]. In addition, OSINT sources also identified that the JARM fingerprint of the service running on this IP and port (00000000000000000043d43d00043de2a97eabb398317329f027c66e4c1b01) was linked to the Sliver C2 framework and the mTLS protocol it is known to use [4] [5].

An Additional Example of Darktrace’s Detection of Sliver C2

However, it was not just during the January 2024 exploitation of Ivanti services that Darktrace observed cases of Sliver C2 usages across its customer base.  In March 2023, for example, Darktrace detected devices on multiple customer accounts making beaconing connections to malicious endpoints linked to Sliver C2 infrastructure, including 18.234.7[.]23 [10] [11] [12] [13].

Darktrace identified that the observed connections to this endpoint contained the unusual URI ‘/NIS-[REDACTED]’ which contained 125 characters, including numbers, lower and upper case letters, and special characters like “_”, “/”, and “-“, as well as various other URIs which suggested attempted data exfiltration:

‘/upload/api.html?c=[REDACTED] &fp=[REDACTED]’

  • ‘/samples.html?mx=[REDACTED] &s=[REDACTED]’
  • ‘/actions/samples.html?l=[REDACTED] &tc=[REDACTED]’
  • ‘/api.html?gf=[REDACTED] &x=[REDACTED]’
  • ‘/samples.html?c=[REDACTED] &zo=[REDACTED]’

This anomalous external connectivity was carried out through multiple destination ports, including the key ports 443 and 8888.

Darktrace additionally observed devices on affected customer networks performing TLS beaconing to the IP address 44.202.135[.]229 with the JA3 hash 19e29534fd49dd27d09234e639c4057e. According to OSINT sources, this JA3 hash is associated with the Golang TLS cipher suites in which the Sliver framework is developed [14].

Conclusion

Despite its relative novelty in the threat landscape and its lesser-known status compared to other C2 frameworks, Darktrace has demonstrated its ability effectively detect malicious use of Sliver C2 across numerous customer environments. This included instances where attackers exploited vulnerabilities in the Ivanti Connect Secure and Policy Secure services.

While human security teams may lack awareness of this framework, and traditional rules and signatured-based security tools might not be fully equipped and updated to detect Sliver C2 activity, Darktrace’s Self Learning AI understands its customer networks, users, and devices. As such, Darktrace is adept at identifying subtle deviations in device behavior that could indicate network compromise, including connections to new or unusual external locations, regardless of whether attackers use established or novel C2 frameworks, providing organizations with a sliver of hope in an ever-evolving threat landscape.

Credit to Natalia Sánchez Rocafort, Cyber Security Analyst, Paul Jennings, Principal Analyst Consultant

Appendices

DETECT Model Coverage

  • Compromise / Repeating Connections Over 4 Days
  • Anomalous Connection / Application Protocol on Uncommon Port
  • Anomalous Server Activity / Server Activity on New Non-Standard Port
  • Compromise / Sustained TCP Beaconing Activity To Rare Endpoint
  • Compromise / Quick and Regular Windows HTTP Beaconing
  • Compromise / High Volume of Connections with Beacon Score
  • Anomalous Connection / Multiple Failed Connections to Rare Endpoint
  • Compromise / Slow Beaconing Activity To External Rare
  • Compromise / HTTP Beaconing to Rare Destination
  • Compromise / Sustained SSL or HTTP Increase
  • Compromise / Large Number of Suspicious Failed Connections
  • Compromise / SSL or HTTP Beacon
  • Compromise / Possible Malware HTTP Comms
  • Compromise / Possible Tunnelling to Bin Services
  • Anomalous Connection / Low and Slow Exfiltration to IP
  • Device / New User Agent
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Anomalous File / EXE from Rare External Location
  • Anomalous File / Numeric File Download
  • Anomalous Connection / Powershell to Rare External
  • Anomalous Server Activity / New Internet Facing System

List of Indicators of Compromise (IoCs)

18.234.7[.]23 - Destination IP - Likely C2 Server

103.13.28[.]40 - Destination IP - Likely C2 Server

44.202.135[.]229 - Destination IP - Likely C2 Server

References

[1] https://bishopfox.com/tools/sliver

[2] https://vk9-sec.com/how-to-set-up-use-c2-sliver/

[3] https://www.scmagazine.com/brief/sliver-c2-framework-gaining-traction-among-threat-actors

[4] https://github[.]com/BishopFox/sliver

[5] https://www.cybereason.com/blog/sliver-c2-leveraged-by-many-threat-actors

[6] https://securityaffairs.com/158393/malware/ivanti-connect-secure-vpn-deliver-krustyloader.html

[7] https://www.xenonstack.com/insights/out-of-band-application-security-testing

[8] https://www.virustotal.com/gui/ip-address/103.13.28.40/detection

[9] https://threatfox.abuse.ch/browse.php?search=ioc%3A107.174.78.227

[10] https://threatfox.abuse.ch/ioc/1074576/

[11] https://threatfox.abuse.ch/ioc/1093887/

[12] https://threatfox.abuse.ch/ioc/846889/

[13] https://threatfox.abuse.ch/ioc/1093889/

[14] https://github.com/projectdiscovery/nuclei/issues/3330

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Natalia Sánchez Rocafort
Cyber Security Analyst

More in this series

No items found.

Blog

/

/

October 20, 2025

Salty Much: Darktrace’s view on a recent Salt Typhoon intrusion

salt typhoonDefault blog imageDefault blog image

What is Salt Typhoon?

Salt Typhoon represents one of the most persistent and sophisticated cyber threats targeting global critical infrastructure today. Believed to be linked to state-sponsored actors from the People’s Republic of China (PRC), this advanced persistent threat (APT) group has executed a series of high-impact campaigns against telecommunications providers, energy networks, and government systems—most notably across the United States.

Active since at least 2019, the group—also tracked as Earth Estries, GhostEmperor, and UNC2286—has demonstrated advanced capabilities in exploiting edge devices, maintaining deep persistence, and exfiltrating sensitive data across more than 80 countries. While much of the public reporting has focused on U.S. targets, Salt Typhoon’s operations have extended into Europe, the Middle East, and Africa (EMEA) where it has targeted telecoms, government entities, and technology firms. Its use of custom malware and exploitation of high-impact vulnerabilities (e.g., Ivanti, Fortinet, Cisco) underscores the strategic nature of its campaigns, which blend intelligence collection with geopolitical influence [1].

Leveraging zero-day exploits, obfuscation techniques, and lateral movement strategies, Salt Typhoon has demonstrated an alarming ability to evade detection and maintain long-term access to sensitive environments. The group’s operations have exposed lawful intercept systems, compromised metadata for millions of users, and disrupted essential services, prompting coordinated responses from intelligence agencies and private-sector partners worldwide. As organizations reassess their threat models, Salt Typhoon serves as a stark reminder of the evolving nature of nation-state cyber operations and the urgent need for proactive defense strategies.

Darktrace’s coverage

In this case, Darktrace observed activity in a European telecommunications organisation consistent with Salt Typhoon’s known tactics, techniques and procedures (TTPs), including dynamic-link library (DLL) sideloading and abuse of legitimate software for stealth and execution.

Initial access

The intrusion likely began with exploitation of a Citrix NetScaler Gateway appliance in the first week of July 2025. From there, the actor pivoted to Citrix Virtual Delivery Agent (VDA) hosts in the client’s Machine Creation Services (MCS) subnet. Initial access activities in the intrusion originated from an endpoint potentially associated with the SoftEther VPN service, suggesting infrastructure obfuscation from the outset.

Tooling

Darktrace subsequently observed the threat actor delivering a backdoor assessed with high confidence to be SNAPPYBEE (also known as Deed RAT) [2][3] to multiple Citrix VDA hosts. The backdoor was delivered to these internal endpoints as a DLL alongside legitimate executable files for antivirus software such as Norton Antivirus, Bkav Antivirus, and IObit Malware Fighter. This pattern of activity indicates that the attacker relied on DLL side-loading via legitimate antivirus software to execute their payloads. Salt Typhoon and similar groups have a history of employing this technique [4][5], enabling them to execute payloads under the guise of trusted software and bypassing traditional security controls.

Command-and-Control (C2)

The backdoor delivered by the threat actor leveraged LightNode VPS endpoints for C2, communicating over both HTTP and an unidentified TCP-based protocol. This dual-channel setup is consistent with Salt Typhoon’s known use of non-standard and layered protocols to evade detection. The HTTP communications displayed by the backdoor included POST requests with an Internet Explorer User-Agent header and Target URI patterns such as “/17ABE7F017ABE7F0”. One of the C2 hosts contacted by compromised endpoints was aar.gandhibludtric[.]com (38.54.63[.]75), a domain recently linked to Salt Typhoon [6].

Detection timeline

Darktrace produced high confidence detections in response to the early stages of the intrusion, with both the initial tooling and C2 activities being strongly covered by both investigations by Darktrace Cyber AI AnalystTM investigations and Darktrace models. Despite the sophistication of the threat actor, the intrusion activity identified and remediated before escalating beyond these early stages of the attack, with Darktrace’s timely high-confidence detections likely playing a key role in neutralizing the threat.

Cyber AI Analyst observations

Darktrace’s Cyber AI Analyst autonomously investigated the model alerts generated by Darktrace during the early stages of the intrusion. Through its investigations, Cyber AI Analyst discovered the initial tooling and C2 events and pieced them together into unified incidents representing the attacker’s progression.

Cyber AI Analyst weaved together separate events from the intrusion into broader incidents summarizing the attacker’s progression.
Figure 1: Cyber AI Analyst weaved together separate events from the intrusion into broader incidents summarizing the attacker’s progression.

Conclusion

Based on overlaps in TTPs, staging patterns, infrastructure, and malware, Darktrace assesses with moderate confidence that the observed activity was consistent with Salt Typhoon/Earth Estries (ALA GhostEmperor/UNC2286). Salt Typhoon continues to challenge defenders with its stealth, persistence, and abuse of legitimate tools. As attackers increasingly blend into normal operations, detecting behavioral anomalies becomes essential for identifying subtle deviations and correlating disparate signals. The evolving nature of Salt Typhoon’s tradecraft, and its ability to repurpose trusted software and infrastructure, ensures it will remain difficult to detect using conventional methods alone. This intrusion highlights the importance of proactive defense, where anomaly-based detections, not just signature matching, play a critical role in surfacing early-stage activity.

Credit to Nathaniel Jones (VP, Security & AI Strategy, FCISO), Sam Lister (Specialist Security Researcher), Emma Foulger (Global Threat Research Operations Lead), Adam Potter (Senior Cyber Analyst)

Edited by Ryan Traill (Analyst Content Lead)

Appendices

Indicators of Compromise (IoCs)

IoC-Type-Description + Confidence

89.31.121[.]101 – IP Address – Possible C2 server

hxxp://89.31.121[.]101:443/WINMM.dll - URI – Likely SNAPPYBEE download

b5367820cd32640a2d5e4c3a3c1ceedbbb715be2 - SHA1 – Likely SNAPPYBEE download

hxxp://89.31.121[.]101:443/NortonLog.txt - URI - Likely DLL side-loading activity

hxxp://89.31.121[.]101:443/123.txt - URI - Possible DLL side-loading activity

hxxp://89.31.121[.]101:443/123.tar - URI - Possible DLL side-loading activity

hxxp://89.31.121[.]101:443/pdc.exe - URI - Possible DLL side-loading activity

hxxp://89.31.121[.]101:443//Dialog.dat - URI - Possible DLL side-loading activity

hxxp://89.31.121[.]101:443/fltLib.dll - URI - Possible DLL side-loading activity

hxxp://89.31.121[.]101:443/DisplayDialog.exe - URI - Possible DLL side-loading activity

hxxp://89.31.121[.]101:443/DgApi.dll - URI - Likely DLL side-loading activity

hxxp://89.31.121[.]101:443/dbindex.dat - URI - Likely DLL side-loading activity

hxxp://89.31.121[.]101:443/1.txt - URI - Possible DLL side-loading activity

hxxp://89.31.121[.]101:443/imfsbDll.dll – Likely DLL side-loading activity

hxxp://89.31.121[.]101:443/imfsbSvc.exe - URI – Likely DLL side-loading activity

aar.gandhibludtric[.]com – Hostname – Likely C2 server

38.54.63[.]75 – IP – Likely C2 server

156.244.28[.]153 – IP – Possible C2 server

hxxp://156.244.28[.]153/17ABE7F017ABE7F0 - URI – Possible C2 activity

MITRE TTPs

Technique | Description

T1190 | Exploit Public-Facing Application - Citrix NetScaler Gateway compromise

T1105 | Ingress Tool Transfer – Delivery of backdoor to internal hosts

T1665 | Hide Infrastructure – Use of SoftEther VPN for C2

T1574.001 | Hijack Execution Flow: DLL – Execution of backdoor through DLL side-loading

T1095 | Non-Application Layer Protocol – Unidentified application-layer protocol for C2 traffic

T1071.001| Web Protocols – HTTP-based C2 traffic

T1571| Non-Standard Port – Port 443 for unencrypted HTTP traffic

Darktrace Model Alerts during intrusion

Anomalous File::Internal::Script from Rare Internal Location

Anomalous File::EXE from Rare External Location

Anomalous File::Multiple EXE from Rare External Locations

Anomalous Connection::Possible Callback URL

Antigena::Network::External Threat::Antigena Suspicious File Block

Antigena::Network::Significant Anomaly::Antigena Significant Server Anomaly Block

Antigena::Network::Significant Anomaly::Antigena Controlled and Model Alert

Antigena::Network::Significant Anomaly::Antigena Alerts Over Time Block

Antigena::Network::External Threat::Antigena File then New Outbound Block  

References

[1] https://www.cisa.gov/news-events/cybersecurity-advisories/aa25-239a

[2] https://www.trendmicro.com/en_gb/research/24/k/earth-estries.html

[3] https://www.trendmicro.com/content/dam/trendmicro/global/en/research/24/k/earth-estries/IOC_list-EarthEstries.txt

[4] https://www.trendmicro.com/en_gb/research/24/k/breaking-down-earth-estries-persistent-ttps-in-prolonged-cyber-o.html

[5] https://lab52.io/blog/deedrat-backdoor-enhanced-by-chinese-apts-with-advanced-capabilities/

[6] https://www.silentpush.com/blog/salt-typhoon-2025/

The content provided in this blog is published by Darktrace for general informational purposes only and reflects our understanding of cybersecurity topics, trends, incidents, and developments at the time of publication. While we strive to ensure accuracy and relevance, the information is provided “as is” without any representations or warranties, express or implied. Darktrace makes no guarantees regarding the completeness, accuracy, reliability, or timeliness of any information presented and expressly disclaims all warranties.

Nothing in this blog constitutes legal, technical, or professional advice, and readers should consult qualified professionals before acting on any information contained herein. Any references to third-party organizations, technologies, threat actors, or incidents are for informational purposes only and do not imply affiliation, endorsement, or recommendation.

Darktrace, its affiliates, employees, or agents shall not be held liable for any loss, damage, or harm arising from the use of or reliance on the information in this blog.

The cybersecurity landscape evolves rapidly, and blog content may become outdated or superseded. We reserve the right to update, modify, or remove any content.

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO

Blog

/

/

October 15, 2025

How a Major Civil Engineering Company Reduced MTTR across Network, Email and the Cloud with Darktrace

Default blog imageDefault blog image

Asking more of the information security team

“What more can we be doing to secure the company?” is a great question for any cyber professional to hear from their Board of Directors. After successfully defeating a series of attacks and seeing the potential for AI tools to supercharge incoming threats, a UK-based civil engineering company’s security team had the answer: Darktrace.

“When things are coming at you at machine speed, you need machine speed to fight it off – it’s as simple as that,” said their Information Security Manager. “There were incidents where it took us a few hours to get to the bottom of what was going on. Darktrace changed that.”

Prevention was also the best cure. A peer organization in the same sector was still in business continuity measures 18 months after an attack, and the security team did not want to risk that level of business disruption.

Legacy tools were not meeting the team’s desired speed or accuracy

The company’s native SaaS email platform took between two and 14 days to alert on suspicious emails, with another email security tool flagging malicious emails after up to 24 days. After receiving an alert, responses often took a couple of days to coordinate. The team was losing precious time.

Beyond long detection and response times, the old email security platform was no longer performing: 19% of incoming spam was missed. Of even more concern: 6% of phishing emails reached users’ inboxes, and malware and ransomware email was also still getting through, with 0.3% of such email-borne payloads reaching user inboxes.

Choosing Darktrace

“When evaluating tools in 2023, only Darktrace had what I was looking for: an existing, mature, AI-based cybersecurity solution. ChatGPT had just come out and a lot of companies were saying ‘AI this’ and ‘AI that’. Then you’d take a look, and it was all rules- and cases-based, not AI at all,” their Information Security Manager.

The team knew that, with AI-enabled attacks on the horizon, a cybersecurity company that had already built, fielded, and matured an AI-powered cyber defense would give the security team the ability to fend off machine-speed attacks at the same pace as the attackers.

Darktrace accomplishes this with multi-layered AI that learns each organization’s normal business operations. With this detailed level of understanding, Darktrace’s Self-Learning AI can recognize unusual activity that may indicate a cyber-attack, and works to neutralize the threat with precise response actions. And it does this all at machine speed and with minimal disruption.

On the morning the team was due to present its findings, the session was cancelled – for a good reason. The Board didn’t feel further discussion was necessary because the case for Darktrace was so conclusive. The CEO described the Darktrace option as ‘an insurance policy we can’t do without’.

Saving time with Darktrace / EMAIL

Darktrace / EMAIL reduced the discovery, alert, and response process from days or weeks to seconds .

Darktrace / EMAIL automates what was originally a time-consuming and repetitive process. The team has recovered between eight and 10 working hours a week by automating much of this process using / EMAIL.

Today, Darktrace / EMAIL prevents phishing emails from reaching employees’ inboxes. The volume of hostile and unsolicited email fell to a third of its original level after Darktrace / EMAIL was set up.

Further savings with Darktrace / NETWORK and Darktrace / IDENTITY

Since its success with Darktrace / EMAIL, the company adopted two more products from the Darktrace ActiveAI Security Platform – Darktrace / NETWORK and Darktrace / IDENTITY.

These have further contributed to cost savings. An initial plan to build a 24/7 SOC would have required hiring and retaining six additional analysts, rather than the two that currently use Darktrace, costing an additional £220,000 per year in salary. With Darktrace, the existing analysts have the tools needed to become more effective and impactful.

An additional benefit: Darktrace adoption has lowered the company’s cyber insurance premiums. The security team can reallocate this budget to proactive projects.

Detection of novel threats provides reassurance

Darktrace’s unique approach to cybersecurity added a key benefit. The team’s previous tool took a rules-based approach – which was only good if the next attack featured the same characteristics as the ones on which the tool was trained.

“Darktrace looks for anomalous behavior, and we needed something that detected and responded based on use cases, not rules that might be out of date or too prescriptive,” their Information Security Manager. “Our existing provider could take a couple of days to update rules and signatures, and in this game, speed is of the essence. Darktrace just does everything we need - without delay.”

Where rules-based tools must wait for a threat to emerge before beginning to detect and respond to it, Darktrace identifies and protects against unknown and novel threats, speeding identification, response, and recovery, minimizing business disruption as a result.

Looking to the future

With Darktrace in place, the UK-based civil engineering company team has reallocated time and resources usually spent on detection and alerting to now tackle more sophisticated, strategic challenges. Darktrace has also equipped the team with far better and more regularly updated visibility into potential vulnerabilities.

“One thing that frustrates me a little is penetration testing; our ISO accreditation mandates a penetration test at least once a year, but the results could be out of date the next day,” their Information Security Manager. “Darktrace / Proactive Exposure Management will give me that view in real time – we can run it daily if needed - and that’s going to be a really effective workbench for my team.”

As the company looks to further develop its security posture, Darktrace remains poised to evolve alongside its partner.

Continue reading
About the author
The Darktrace Community
Your data. Our AI.
Elevate your network security with Darktrace AI