Blog
/
Email
/
April 2, 2023

Enhancing Security Teams with AI-Powered Email Solutions

Discover email-based attack challenges & how AI security solutions can tackle these attacks with autonomous action, optimized workflows, and user visibility.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Dan Fein
VP, Product
security operations centerDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
02
Apr 2023

The modern security team faces challenges on all fronts – it is too often overstretched dealing with an increased attack surface, enabling workforces for secure remote work, and managing multiple security tools to protect that workforce. Added to that, the surge in more sophisticated phishing campaigns – now supported by AI tools – means that it’s harder than ever to pre-empt attacks. 

The needs of the security team should be a key consideration when deploying an email security solution, as it’s them who will be accountable for the success and maintenance of the product. Minimizing time spent inside the user interface – through trusted detection and response technology combined with intuitive reporting and optimized workflows – should be front of mind for vendors in order to assure teams of their value.

Taking security teams off the frontline 

No team should be spending all of their time maintaining email security policies, releasing emails that shouldn’t have been held, or holding back emails that should have been – all the things that traditional email security solutions have almost forced them to become accustomed to. A day in the life of an admin shouldn’t include tens – and certainly not hundreds – of minutes spent in their email security dashboard. 

At the moment, teams are logging in far too often, and when they do, they’re forced to make individual decisions about safe listing and blocking domains, or releasing emails. These can lead to the creation of blanket rules that open up future windows for attackers – unintended consequences that ultimately create more work in the future. This type of hand-to-hand combat puts security teams on the frontline, when their time could be much better spent doing the high-level strategic work humans are best at.  

Understanding You: A Different Approach to Email Security

In today’s discussions about email security, there is a consensus that relying on a gateway is no longer feasible. The new era is one of ICES (Integrated cloud email security) solutions and other tools leveraging artificial intelligence and APIs. But there's no point adopting new technology with an old philosophy – and most of these solutions use AI to automate the same old approach: looking at past attacks to try and stop the next. 

This is where Darktrace/Email takes a fundamentally different and unique approach. It’s not just about using AI; it’s about using it in the right capacity. Our AI understands you – learning where users log in from, who they email, their behavior throughout the day – to tailor the detection and response process according to their individual profile. There’s no point withholding an email if only a tiny element of it poses a risk – Darktrace/Email takes the least aggressive action required to neutralize a threat. Instead of a blanket allow-deny criteria, it can rewrite links or withhold attachments based on its knowledge of the user’s normal inbox activity. Stopping malicious emails while allowing legitimate emails through – with risky elements neutralized – lifts security teams out of the fire-fighting activities described earlier and frees up their time for more strategic and valuable decision-making.

This is going to get me to reduce my current email security stack… this is going to take it to that level that I need it to”

- Early Look Customer, Darktrace/Email 

Account Takeover 

Embedded account takeover protection is an essential component of modern email security. Security teams need visibility not just over email breaches but of what happens once an attacker has control of an inbox, particularly in the most damaging use cases like Business Email Compromise (BEC) and ransomware. This entails understanding a user’s behavior in their inbox, outbound emails and beyond into their wider account activity. Darktrace captures a user’s activity across email and their Microsoft or Google account in a single pane of glass – detecting and countering all of the markers that could signify a compromised account.  

Insights from other cloud applications and network devices gleaned from Darktrace's wider visibility of the business can bring a 360° understanding of the user, further enhancing detection of account takeover and other harmful activity.

Figure 1: A 360° understanding of a user reveals their digital touchpoints beyond Microsoft

What ‘user-friendly’ actually looks like 

The best user interface is one that you never have to log into. In an ideal world, teams are able to visit their tools less frequently because intelligent AI is automating work previously done by humans. This is made possible by Darktrace’s precision detection and response technology, which takes appropriate action on emails and accounts to neutralize threats without disrupting day-to-day business operations. 

The second-best user interface is one where you can quickly log in and get key insights fast, whether that’s regarding an action taken or the current activity of a user – and then get out. Darktrace/Email enables teams to get key information quickly, at both a high and granular level.  The dashboard offers immediate insights into users and emails, with a real-time snapshot of active user identities, targeted user and actioned emails, segmented by type of attack. 

At every touchpoint, Darktrace reduces friction with optimized workflows. From being able to quickly identify VIPs to safely previewing links and attachments, security teams can get the information they need without needing to switch between windows or navigate inaccessible interfaces. Explainable AI gives users natural-language summaries of individual emails or the overall health of an email environment, and simplified action flows allow security teams to personalize security for different employees – for example, sending VIPs a unique notification, or taking extra precautions around employees who work in accounting. Taken together, this meaning that admins can spend even less time managing policies. 

Figure 2: Darktrace/Email dashboard displaying key information about the email environment in a single pane of glass

The ideal interface is also the one that’s the most accessible to you. The mobile app guarantees convenience for security teams, making available all the main functions of the interface for on-the-go analysis at any time or place. Teams can travel or leave the office while retaining the peace of mind that if a critical incident was to occur, they would be able to get instant visibility on the data and take action without needing to get back to their desks.  

Figure 3: Security admins are able to preview, analyze, and act on emails directly from the Darktrace Mobile App

With every passing day, the security team can rest easier. Every activity is taken into account to help the AI tune and adapt over time to become even better at detecting and responding to threats.   

Having email on the app is going to be game changing” 

- Early Look Customer, Darktrace/Email 

Getting the full picture

Most often, email is the entry point from which a threat actor moves stealthily throughout an organization collecting information and assets. Most solutions look at email in isolation, without prioritizing or connecting disparate events into a wider pattern. 

In contrast, Darktrace/Email integrates seamlessly with Darktrace's Cyber AI Analyst, a technology that conducts autonomous enterprise-wide investigations around every alert produced by the wider Darktrace platform. Through this integration, malicious email activity is analyzed and displayed in the context of the full security incident to which it belongs. As a result, security teams can see why and how a wider problem might have originated in email and spread to other apps, endpoints, or the wider corporate network.

Empowering employees to take an active role in security

The role of the security team can be made more difficult if employees take a lax or disengaged approach to security – or if a user is given too much control, and has the ability to make potentially dangerous decisions. Training employees on security procedures is another to-do which can easily fall to the bottom of the agenda during busy periods, especially as point-in-time phishing simulations have proven to be not particularly effective. 

To this end, Darktrace/Email uses Explainable AI to say in natural language what it thought about an email, and delivers its findings not just to the security team, but optionally to the wider workforce as well. Delivered in the form of contextual banners in emails, periodic digests, or directly in Outlook, these insights transform security education from a quarterly or yearly exercise into real-time security awareness. Our next blog will dive deeper into how employee engagement can support the security team’s efforts and harden defenses throughout the organization. 

Because Darktrace is built on a fundamentally different approach, it not only stops novel and targeted sophisticated attacks but allows legitimate emails to flow through. This is what makes it a truly set-and-forget technology, with the AI taking on much of the heavy lifting previously undertaken by security teams. 

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Dan Fein
VP, Product

Blog

/

/

July 17, 2025

Introducing the AI Maturity Model for Cybersecurity

AI maturity model for cybersecurityDefault blog imageDefault blog image

AI adoption in cybersecurity: Beyond the hype

Security operations today face a paradox. On one hand, artificial intelligence (AI) promises sweeping transformation from automating routine tasks to augmenting threat detection and response. On the other hand, security leaders are under immense pressure to separate meaningful innovation from vendor hype.

To help CISOs and security teams navigate this landscape, we’ve developed the most in-depth and actionable AI Maturity Model in the industry. Built in collaboration with AI and cybersecurity experts, this framework provides a structured path to understanding, measuring, and advancing AI adoption across the security lifecycle.

Overview of AI maturity levels in cybersecurity

Why a maturity model? And why now?

In our conversations and research with security leaders, a recurring theme has emerged:

There’s no shortage of AI solutions, but there is a shortage of clarity and understanding of AI uses cases.

In fact, Gartner estimates that “by 2027, over 40% of Agentic AI projects will be canceled due to escalating costs, unclear business value, or inadequate risk controls. Teams are experimenting, but many aren’t seeing meaningful outcomes. The need for a standardized way to evaluate progress and make informed investments has never been greater.

That’s why we created the AI Security Maturity Model, a strategic framework that:

  • Defines five clear levels of AI maturity, from manual processes (L0) to full AI Delegation (L4)
  • Delineating the outcomes derived between Agentic GenAI and Specialized AI Agent Systems
  • Applies across core functions such as risk management, threat detection, alert triage, and incident response
  • Links AI maturity to real-world outcomes like reduced risk, improved efficiency, and scalable operations

[related-resource]

How is maturity assessed in this model?

The AI Maturity Model for Cybersecurity is grounded in operational insights from nearly 10,000 global deployments of Darktrace's Self-Learning AI and Cyber AI Analyst. Rather than relying on abstract theory or vendor benchmarks, the model reflects what security teams are actually doing, where AI is being adopted, how it's being used, and what outcomes it’s delivering.

This real-world foundation allows the model to offer a practical, experience-based view of AI maturity. It helps teams assess their current state and identify realistic next steps based on how organizations like theirs are evolving.

Why Darktrace?

AI has been central to Darktrace’s mission since its inception in 2013, not just as a feature, but the foundation. With over a decade of experience building and deploying AI in real-world security environments, we’ve learned where it works, where it doesn’t, and how to get the most value from it. This model reflects that insight, helping security leaders find the right path forward for their people, processes, and tools

Security teams today are asking big, important questions:

  • What should we actually use AI for?
  • How are other teams using it — and what’s working?
  • What are vendors offering, and what’s just hype?
  • Will AI ever replace people in the SOC?

These questions are valid, and they’re not always easy to answer. That’s why we created this model: to help security leaders move past buzzwords and build a clear, realistic plan for applying AI across the SOC.

The structure: From experimentation to autonomy

The model outlines five levels of maturity :

L0 – Manual Operations: Processes are mostly manual with limited automation of some tasks.

L1 – Automation Rules: Manually maintained or externally-sourced automation rules and logic are used wherever possible.

L2 – AI Assistance: AI assists research but is not trusted to make good decisions. This includes GenAI agents requiring manual oversight for errors.

L3 – AI Collaboration: Specialized cybersecurity AI agent systems  with business technology context are trusted with specific tasks and decisions. GenAI has limited uses where errors are acceptable.

L4 – AI Delegation: Specialized AI agent systems with far wider business operations and impact context perform most cybersecurity tasks and decisions independently, with only high-level oversight needed.

Each level reflects a shift, not only in technology, but in people and processes. As AI matures, analysts evolve from executors to strategic overseers.

Strategic benefits for security leaders

The maturity model isn’t just about technology adoption it’s about aligning AI investments with measurable operational outcomes. Here’s what it enables:

SOC fatigue is real, and AI can help

Most teams still struggle with alert volume, investigation delays, and reactive processes. AI adoption is inconsistent and often siloed. When integrated well, AI can make a meaningful difference in making security teams more effective

GenAI is error prone, requiring strong human oversight

While there is a lot of hype around GenAI agentic systems, teams will need to account for inaccuracy and hallucination in Agentic GenAI systems.

AI’s real value lies in progression

The biggest gains don’t come from isolated use cases, but from integrating AI across the lifecycle, from preparation through detection to containment and recovery.

Trust and oversight are key initially but evolves in later levels

Early-stage adoption keeps humans fully in control. By L3 and L4, AI systems act independently within defined bounds, freeing humans for strategic oversight.

People’s roles shift meaningfully

As AI matures, analyst roles consolidate and elevate from labor intensive task execution to high-value decision-making, focusing on critical, high business impact activities, improving processes and AI governance.

Outcome, not hype, defines maturity

AI maturity isn’t about tech presence, it’s about measurable impact on risk reduction, response time, and operational resilience.

[related-resource]

Outcomes across the AI Security Maturity Model

The Security Organization experiences an evolution of cybersecurity outcomes as teams progress from manual operations to AI delegation. Each level represents a step-change in efficiency, accuracy, and strategic value.

L0 – Manual Operations

At this stage, analysts manually handle triage, investigation, patching, and reporting manually using basic, non-automated tools. The result is reactive, labor-intensive operations where most alerts go uninvestigated and risk management remains inconsistent.

L1 – Automation Rules

At this stage, analysts manage rule-based automation tools like SOAR and XDR, which offer some efficiency gains but still require constant tuning. Operations remain constrained by human bandwidth and predefined workflows.

L2 – AI Assistance

At this stage, AI assists with research, summarization, and triage, reducing analyst workload but requiring close oversight due to potential errors. Detection improves, but trust in autonomous decision-making remains limited.

L3 – AI Collaboration

At this stage, AI performs full investigations and recommends actions, while analysts focus on high-risk decisions and refining detection strategies. Purpose-built agentic AI systems with business context are trusted with specific tasks, improving precision and prioritization.

L4 – AI Delegation

At this stage, Specialized AI Agent Systems performs most security tasks independently at machine speed, while human teams provide high-level strategic oversight. This means the highest time and effort commitment activities by the human security team is focused on proactive activities while AI handles routine cybersecurity tasks

Specialized AI Agent Systems operate with deep business context including impact context to drive fast, effective decisions.

Join the webinar

Get a look at the minds shaping this model by joining our upcoming webinar using this link. We’ll walk through real use cases, share lessons learned from the field, and show how security teams are navigating the path to operational AI safely, strategically, and successfully.

Continue reading
About the author

Blog

/

/

July 17, 2025

Forensics or Fauxrensics: Five Core Capabilities for Cloud Forensics and Incident Response

people working and walking in officeDefault blog imageDefault blog image

The speed and scale at which new cloud resources can be spun up has resulted in uncontrolled deployments, misconfigurations, and security risks. It has had security teams racing to secure their business’ rapid migration from traditional on-premises environments to the cloud.

While many organizations have successfully extended their prevention and detection capabilities to the cloud, they are now experiencing another major gap: forensics and incident response.

Once something bad has been identified, understanding its true scope and impact is nearly impossible at times. The proliferation of cloud resources across a multitude of cloud providers, and the addition of container and serverless capabilities all add to the complexities. It’s clear that organizations need a better way to manage cloud incident response.

Security teams are looking to move past their homegrown solutions and open-source tools to incorporate real cloud forensics capabilities. However, with the increased buzz around cloud forensics, it can be challenging to decipher what is real cloud forensics, and what is “fauxrensics.”

This blog covers the five core capabilities that security teams should consider when evaluating a cloud forensics and incident response solution.

[related-resource]

1. Depth of data

There have been many conversations among the security community about whether cloud forensics is just log analysis. The reality, however, is that cloud forensics necessitates access to a robust dataset that extends far beyond traditional log data sources.

While logs provide valuable insights, a forensics investigation demands a deeper understanding derived from multiple data sources, including disk, network, and memory, within the cloud infrastructure. Full disk analysis complements log analysis, offering crucial context for identifying the root cause and scope of an incident.

For instance, when investigating an incident involving a Kubernetes cluster running on an EC2 instance, access to bash history can provide insights into the commands executed by attackers on the affected instance, which would not be available through cloud logs alone.

Having all of the evidence in one place is also a capability that can significantly streamline investigations, unifying your evidence be it disk images, memory captures or cloud logs, into a single timeline allowing security teams to reconstruct an attacks origin, path and impact far more easily. Multi–cloud environments also require platforms that can support aggregating data from many providers and services into one place. Doing this enables more holistic investigations and reduces security blind spots.

There is also the importance of collecting data from ephemeral resources in modern cloud and containerized environments. Critical evidence can be lost in seconds as resources are constantly spinning up and down, so having the ability to capture this data before its gone can be a huge advantage to security teams, rather than having to figure out what happened after the affected service is long gone.

darktrace / cloud, cado, cloud logs, ost, and memory information. value of cloud combined analysis

2. Chain of custody

Chain of custody is extremely critical in the context of legal proceedings and is an essential component of forensics and incident response. However, chain of custody in the cloud can be extremely complex with the number of people who have access and the rise of multi-cloud environments.

In the cloud, maintaining a reliable chain of custody becomes even more complex than it already is, due to having to account for multiple access points, service providers and third parties. Having automated evidence tracking is a must. It means that all actions are logged, from collection to storage to access. Automation also minimizes the chance of human error, reducing the risk of mistakes or gaps in evidence handling, especially in high pressure fast moving investigations.

The ability to preserve unaltered copies of forensic evidence in a secure manner is required to ensure integrity throughout an investigation. It is not just a technical concern, its a legal one, ensuring that your evidence handling is documented and time stamped allows it to stand up to court or regulatory review.

Real cloud forensics platforms should autonomously handle chain of custody in the background, recording and safeguarding evidence without human intervention.

3. Automated collection and isolation

When malicious activity is detected, the speed at which security teams can determine root cause and scope is essential to reducing Mean Time to Response (MTTR).

Automated forensic data collection and system isolation ensures that evidence is collected and compromised resources are isolated at the first sign of malicious activity. This can often be before an attacker has had the change to move latterly or cover their tracks. This enables security teams to prevent potential damage and spread while a deeper-dive forensics investigation takes place. This method also ensures critical incident evidence residing in ephemeral environments is preserved in the event it is needed for an investigation. This evidence may only exist for minutes, leaving no time for a human analyst to capture it.

Cloud forensics and incident response platforms should offer the ability to natively integrate with incident detection and alerting systems and/or built-in product automation rules to trigger evidence capture and resource isolation.

4. Ease of use

Security teams shouldn’t require deep cloud or incident response knowledge to perform forensic investigations of cloud resources. They already have enough on their plates.

While traditional forensics tools and approaches have made investigation and response extremely tedious and complex, modern forensics platforms prioritize usability at their core, and leverage automation to drastically simplify the end-to-end incident response process, even when an incident spans multiple Cloud Service Providers (CSPs).

Useability is a core requirement for any modern forensics platform. Security teams should not need to have indepth knowledge of every system and resource in a given estate. Workflows, automation and guidance should make it possible for an analyst to investigate whatever resource they need to.

Unifying the workflow across multiple clouds can also save security teams a huge amount of time and resources. Investigations can often span multiple CSP’s. A good security platform should provide a single place to search, correlate and analyze evidence across all environments.

Offering features such as cross cloud support, data enrichment, a single timeline view, saved search, and faceted search can help advanced analysts achieve greater efficiency, and novice analysts are able to participate in more complex investigations.

5. Incident preparedness

Incident response shouldn't just be reactive. Modern security teams need to regularly test their ability to acquire new evidence, triage assets and respond to threats across both new and existing resources, ensuring readiness even in the rapidly changing environments of the cloud.  Having the ability to continuously assess your incident response and forensics workflows enables you to rapidly improve your processes and identify and mitigate any gaps identified that could prevent the organization from being able to effectively respond to potential threats.

Real forensics platforms deliver features that enable security teams to prepare extensively and understand their shortcomings before they are in the heat of an incident. For example, cloud forensics platforms can provide the ability to:

  • Run readiness checks and see readiness trends over time
  • Identify and mitigate issues that could prevent rapid investigation and response
  • Ensure the correct logging, management agents, and other cloud-native tools are appropriately configured and operational
  • Ensure that data gathered during an investigation can be decrypted
  • Verify that permissions are aligned with best practices and are capable of supporting incident response efforts

Cloud forensics with Darktrace

Darktrace delivers a proactive approach to cyber resilience in a single cybersecurity platform, including cloud coverage. Darktrace / CLOUD is a real time Cloud Detection and Response (CDR) solution built with advanced AI to make cloud security accessible to all security teams and SOCs. By using multiple machine learning techniques, Darktrace brings unprecedented visibility, threat detection, investigation, and incident response to hybrid and multi-cloud environments.

Darktrace’s cloud offerings have been bolstered with the acquisition of Cado Security Ltd., which enables security teams to gain immediate access to forensic-level data in multi-cloud, container, serverless, SaaS, and on-premises environments.

[related-resource]

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI