Blog
/
/
May 12, 2021

How AI Protects Critical Infrastructure From Ransomware

Explore the role of AI in safeguarding critical infrastructure from ransomware, as revealed by Darktrace's latest insights.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
David Masson
VP, Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
12
May 2021

Modern Threats to OT Environments

At the 2021 RSA cyber security conference, US Secretary of Homeland Security Alejandro Mayorkas made an era-defining statement regarding the cyber security landscape: “Let me be clear: ransomware now poses a national security threat.”

Last weekend, Mayorkas’ words rang true. A ransomware attack on the Colonial Pipeline – responsible for nearly half of the US East Coast’s diesel, gasoline, and jet fuel – resulted in the shutdown of a critical fuel network supplying a number of Eastern states.

The fallout from the attack demonstrated how widespread and damaging the consequences of ransomware can be. Against critical infrastructure and utilities, cyber-attacks have the potential to disrupt supplies, harm the environment, and even threaten human lives.

Though full details remain to be confirmed, the attack is reported to have been conducted by an affiliate of the cyber-criminal group called DarkSide, and likely leveraged common remote desktop tools. Remote access has been enabled as an exploitable vulnerability within critical infrastructure by the shift to remote work that many organizations made last year, including those with Industrial Control Systems (ICS) and Operational Technology (OT).

The rise of industrial ransomware

Ransomware against industrial environments is on the rise, with a reported 500% increase since 2018. Oftentimes, these threats leverage the convergence of IT and OT systems, first targeting IT before pivoting to OT. This was seen with the EKANS ransomware that included ICS processes in its ‘kill list’, as well as the Cring ransomware that compromised ICS after first exploiting a vulnerability in a virtual private network (VPN).

It remains to be seen whether the initial attack vector in the Colonial Pipeline compromise exploited a technical vulnerability, compromised credentials, or a targeted spear phishing campaign. It has been reported that the attack first impacted IT systems, and that Colonial then shut down OT operations as a safety precaution. Colonial confirms that the ransomware “temporarily halted all pipeline operations and affected some of our IT systems,” showing that, ultimately, both OT and IT were affected. This is a great example of how many OT systems depend on IT, such that an IT cyber-attack has the ability to take down OT and ICS processes.

In addition to locking down systems, the threat actors also stole 100GB of sensitive data from Colonial. This kind of double extortion attack — in which data is exfiltrated before files are encrypted — has unfortunately become the norm rather than the exception, with over 70% of ransomware attacks involving exfiltration. Some ransomware gangs have even announced that they are dropping encryption altogether in favor of data theft and extortion methods.

Earlier this year, Darktrace defended against a double extortion ransomware attack waged against a critical infrastructure organization, which also leveraged common remote access tools. This blog will outline the threat find in depth, showing how Darktrace’s self-learning AI responded autonomously to an attack strikingly similar to the Colonial Pipeline incident.

Darktrace threat find

Ransomware against electric utilities equipment supplier

In an attack against a North American equipment supplier for electrical utilities earlier this year, Darktrace/OT demonstrated its ability to protect critical infrastructure against double extortion ransomware that targeted organizations with ICS and OT.

The ransomware attack initially targeted IT systems, and, thanks to self-learning Cyber AI, was stopped before it could spill over into OT and disrupt operations.

The attacker first compromised an internal server in order to exfiltrate data and deploy ransomware over the course of 12 hours. The short amount of time between initial compromise and deployment is unusual, as ransomware threat actors often wait several days to spread stealthily as far across the cyber ecosystem as possible before striking.

Figure 1: A timeline of the attack

How did the attack bypass the rest of the security stack?

The attacker leveraged ‘Living off the Land’ techniques to blend into the business’ normal ‘patterns of life’, using a compromised admin credential and a remote management tool approved by the organization, in its attempts to remain undetected.

Darktrace commonly sees the abuse of legitimate remote management software in attackers’ arsenal of techniques, tactics, and procedures (TTPs). Remote access is also becoming an increasingly common vector of attack in ICS attacks in particular. For example, in the cyber-incident at the Florida water treatment facility last February, attackers exploited a remote management tool in attempts to manipulate the treatment process.

The specific strain of ransomware deployed by this attacker also successfully evaded detection by anti-virus by using a unique file extension when encrypting files. These forms of ‘signatureless’ ransomware easily slip past legacy approaches to security that rely on rules, signatures, threat feeds, and lists of documented Common Vulnerabilities and Exposures (CVEs), as these are methods that can only detect previously documented threats.

The only way to detect never-before-seen threats like signatureless ransomware is for a technology to find anomalous behavior, rather than rely on lists of ‘known bads’. This can be achieved with self-learning technology, which spots even the most subtle deviations from the normal ‘patterns of life’ for all devices, users, and all the connections between them.

Darktrace insights

Initial compromise and establishing foothold

Despite the abuse of a legitimate tool and the absence of known signatures, Darktrace/OT was able to use a holistic understanding of normal activity to detect the malicious activity at multiple points in the attack lifecycle.

The first clear sign of an emerging threat that was alerted by Darktrace was the unusual use of a privileged credential. The device also served an unusual remote desktop protocol (RDP) connection from a Veeam server shortly before the incident, indicating that the attacker may have moved laterally from elsewhere in the network.

Three minutes later, the device initiated a remote management session which lasted 21 hours. This allowed the attacker to move throughout the broader cyber ecosystem while remaining undetected by traditional defences. Darktrace, however, was able to detect unusual remote management usage as another early warning indicative of an attack.

Double threat part one: Data exfiltration

One hour after the initial compromise, Darktrace detected unusual volumes of data being sent to a 100% rare cloud storage solution, pCloud. The outbound data was encrypted using SSL, but Darktrace created multiple alerts relating to large internal downloads and external uploads that were a significant deviation from the device’s normal ‘pattern of life’.

The device continued to exfiltrate data for nine hours. Analysis of the files downloaded by the device, which were transferred using the unencrypted SMB protocol, suggests that they were sensitive in nature. Fortunately, Darktrace was able to pinpoint the specific files that were exfiltrated so that the customer could immediately evaluate the potential implications of the compromise.

Double threat part two: File encryption

A short time later, at 01:49 local time, the compromised device began encrypting files in a SharePoint back-up share drive. Over the next three and a half hours, the device encrypted over 13,000 files on at least 20 SMB shares. In total, Darktrace produced 23 alerts for the device in question, which amounted to 48% of all the alerts produced in the corresponding 24-hour period.

Darktrace’s Cyber AI Analyst then automatically launched an investigation, identifying the internal data transfers and the file encryption over SMB. From this, it was able to present incident reports that connected the dots among these disparate anomalies, piecing them together into a coherent security narrative. This put the security team in a position to immediately take remediating action.

If the customer had been using Darktrace’s autonomous response technology, there is no doubt the activity would have been halted before significant volumes of data could have been exfiltrated or files encrypted. Fortunately, after seeing both the alerts and Cyber AI Analyst reports, the customer was able to use Darktrace’s ‘Ask the Expert’ (ATE) service for incident response to mitigate the impact of the attack and assist with disaster recovery.

Figure 2: AI Analyst Incident reporting an unusual reprogram command using the MODBUS protocol. The incident includes a plain English summary, relevant technical information, and the investigation process used by the AI.  

Detecting the threat before it could disrupt critical infrastructure

The targeted supplier was overseeing OT and had close ties to critical infrastructure. By facilitating the early-stage response, Darktrace prevented the ransomware from spreading further onto the factory floor. Crucially, Darktrace also minimized operational disruption, helping to avoid the domino effect which the attack could have had, affecting not only the supplier itself, but also the electric utilities that this supplier supports.

As both the recent Colonial Pipeline incident and the above threat find reveal, ransomware is a pressing concern for organizations overseeing industrial operations across all forms of critical infrastructure, from pipelines to the power grid and its suppliers. With self-learning AI, these attack vectors can be dealt with before the damage is done through real-time threat detection, autonomous investigations, and — if activated — targeted machine-speed response.

Looking forward: Using Self-Learning AI to protect critical infrastructure across the board

In late April, the Biden administration announced an ambitious effort to “safeguard US critical infrastructure from persistent and sophisticated threats.” The Department of Energy’s (DOE) 100-day plan specifically seeks technologies “that will provide cyber visibility, detection, and response capabilities for industrial control systems of electric utilities.”

The Biden administration’s cyber sprint clearly calls for a technology that protects critical energy infrastructure, rather than merely best practice measures and regulations. As seen in the above threat find, Darktrace AI is a powerful technology that leverages unsupervised machine learning to autonomously safeguard critical infrastructure and its suppliers with machine speed and precision.

Darktrace enhances detection, mitigation, and forensic capabilities to detect  sophisticated and novel attacks, along with insider threats and pre-existing infections, using Self-Learning Cyber AI, without rules, signatures, or lists of CVEs. Incident investigations provided in real time by Cyber AI Analyst jumpstart remediation with actionable insights, containing emerging attacks at their early stages, before they escalate into crisis.

Enable near real-time situational awareness and response capabilities

Darktrace immediately understands, identifies, and investigates all anomalous activity in ICS/OT networks, whether human or machine driven. Additionally, Darktrace actions targeted response where appropriate to neutralize threats, either actively or in human confirmation mode. Because Self-learning AI adapts alongside evolutions in the ecosystem, organizations benefit from real-time awareness with no tuning or human input necessary

Deploy technologies to increase visibility of threats in ICS and OT systems

Darktrace contextualizes security events, adapts to novel techniques, and translates findings into a security narrative that can be actioned by humans in minutes. Delivering a unified view across IT and OT systems.

Darktrace detects, investigates, and responds to threats at higher Purdue levels and in IT systems before they ‘spill over’ into OT. ‘Plug and play’ deployment seamlessly integrates with technological architecture, presenting 3D network topology with granular visibility into all users, devices, and subnets.

Darktrace's asset identification continuously catalogues all ICS/OT devices and identifies and investigates all threatening activity indicative of emerging attacks – be it ICS ransomware, APTs, zero-day exploits, insider threats, pre-existing infections, DDoS, crypto-mining, misconfigurations, or never-before-seen attacks.

Thanks to Darktrace analyst Oakley Cox for his insights on the above threat find.

Darktrace model detections:

  • Initial compromise:
  • User / New Admin Credential on Client
  • Data exfiltration:
  • Anomalous Connection / Uncommon 1 GiB Outbound
  • Anomalous Connection / Low and Slow Exfiltration
  • Device / Anomalous SMB Followed by Multiple Model Breaches
  • Anomalous Connection / Download and Upload
  • File encryption:
  • Compromise / Ransomware / Suspicious SMB Activity
  • Anomalous Connection / SMB Enumeration
  • Device / Anomalous RDP Followed by Multiple Model Breaches
  • Anomalous File / Internal / Additional Extension Appended to SMB File
  • Anomalous Connection / Sustained MIME Type Conversion
  • Anomalous Connection / Suspicious Read Write Ratio
  • Device / Multiple Lateral Movement Model Breaches

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
David Masson
VP, Field CISO

More in this series

No items found.

Blog

/

/

January 6, 2026

How a leading bank is prioritizing risk management to power a resilient future

Default blog imageDefault blog image

As one of the region’s most established financial institutions, this bank sits at the heart of its community’s economic life – powering everything from daily transactions to business growth and long-term wealth planning. Its blend of physical branches and advanced digital services gives customers the convenience they expect and the personal trust they rely on. But as the financial world becomes more interconnected and adversaries more sophisticated, safeguarding that trust requires more than traditional cybersecurity. It demands a resilient, forward-leaning approach that keeps pace with rising threats and tightening regulatory standards.

A complex risk landscape demands a new approach

The bank faced a challenge familiar across the financial sector: too many tools, not enough clarity. Vulnerability scans, pen tests, and risk reports all produced data, yet none worked together to show how exposures connected across systems or what they meant for day-to-day operations. Without a central platform to link and contextualize this data, teams struggled to see how individual findings translated into real exposure across the business.

  • Fragmented risk assessments: Cyber and operational risks were evaluated in silos, often duplicated across teams, and lacked the context needed to prioritize what truly mattered.
  • Limited executive visibility: Leadership struggled to gain a complete, real-time view of trends or progress, making risk ownership difficult to enforce.
  • Emerging compliance pressure: This gap also posed compliance challenges under the EU’s Digital Operational Resilience Act (DORA), which requires financial institutions to demonstrate continuous oversight, effective reporting, and the ability to withstand and recover from cyber and IT disruptions.
“The issue wasn’t the lack of data,” recalls the bank’s Chief Technology Officer. “The challenge was transforming that data into a unified, contextualized picture we could act on quickly and decisively.”

As the bank advanced its digital capabilities and embraced cloud services, its risk environment became more intricate. New pathways for exploitation emerged, human factors grew harder to quantify, and manual processes hindered timely decision-making. To maintain resilience, the security team sought a proactive, AI-powered platform that could consolidate exposures, deliver continuous insight, and ensure high-value risks were addressed before they escalated.

Choosing Darktrace to unlock proactive cyber resilience

To reclaim control over its fragmented risk landscape, the bank selected Darktrace / Proactive Exposure Management™ for cyber risk insight. The solution’s ability to consolidate scanner outputs, pen test results, CVE data, and operational context into one AI-powered view made it the clear choice. Darktrace delivered comprehensive visibility the team had long been missing.

By shifting from a reactive model to proactive security, the bank aimed to:

  • Improve resilience and compliance with DORA
  • Prioritize remediation efforts with greater accuracy
  • Eliminate duplicated work across teams
  • Provide leadership with a complete view of risk, updated continuously
  • Reduce the overall likelihood of attack or disruption

The CTO explains: “We needed a solution that didn’t just list vulnerabilities but showed us what mattered most for our business – how risks connected, how they could be exploited, and what actions would create the biggest reduction in exposure. Darktrace gave us that clarity.”

Targeting the risks that matter most

Darktrace / Proactive Exposure Management offered the bank a new level of visibility and control by continuously analyzing misconfigurations, critical attack paths, human communication patterns, and high-value assets. Its AI-driven risk scoring allowed the team to understand which vulnerabilities had meaningful business impact, not just which were technically severe.

Unifying exposure across architectures

Darktrace aggregates and contextualizes data from across the bank’s security stack, eliminating the need to manually compile or correlate findings. What once required hours of cross-team coordination now appears in a single, continuously updated dashboard.

Revealing an adversarial view of risk

The solution maps multi-stage, complex attack paths across network, cloud, identity systems, email environments, and endpoints – highlighting risks that traditional CVE lists overlook.

Identifying misconfigurations and controlling gaps

Using Self-Learning AI, Darktrace / Proactive Exposure Management spots misconfigurations and prioritizes them based on MITRE adversary techniques, business context, and the bank’s unique digital environment.

Enhancing red-team and pen test effectiveness

By directing testers to the highest-value targets, Darktrace removes guesswork and validates whether defenses hold up against realistic adversarial behavior.

Supporting DORA compliance

From continuous monitoring to executive-ready reporting, the solution provides the transparency and accountability the bank needs to demonstrate operational resilience frameworks.

Proactive security delivers tangible outcomes

Since deploying Darktrace / Proactive Exposure Management, the bank has significantly strengthened its cybersecurity posture while improving operational efficiency.

Greater insight, smarter prioritization, stronger defensee

Security teams are now saving more than four hours per week previously spent aggregating and analyzing risk data. With a unified view of their exposure, they can focus directly on remediation instead of manually correlating multiple reports.

Because risks are now prioritized based on business impact and real-time operational context, they no longer waste time on low-value tasks. Instead, critical issues are identified and resolved sooner, reducing potential windows for exploitation and strengthening the bank’s ongoing resilience against both known and emerging threats.

“Our goal was to move from reactive to proactive security,” the CTO says. “Darktrace didn’t just help us achieve that, it accelerated our roadmap. We now understand our environment with a level of clarity we simply didn’t have before.”

Leadership clarity and stronger governance

Executives and board stakeholders now receive clear, organization-wide visibility into the bank’s risk posture, supported by consistent reporting that highlights trends, progress, and areas requiring attention. This transparency has strengthened confidence in the bank’s cyber resilience and enabled leadership to take true ownership of risk across the institution.

Beyond improved visibility, the bank has also deepened its overall governance maturity. Continuous monitoring and structured oversight allow leaders to make faster, more informed decisions that strategically align security efforts with business priorities. With a more predictable understanding of exposure and risk movement over time, the organization can maintain operational continuity, demonstrate accountability, and adapt more effectively as regulatory expectations evolve.

Trading stress for control

With Darktrace, leaders now have the clarity and confidence they need to report to executives and regulators with accuracy. The ability to see organization-wide risk in context provides assurance that the right issues are being addressed at the right time. That clarity is also empowering security analysts who no longer shoulder the anxiety of wondering which risks matter most or whether something critical has slipped through the cracks. Instead, they’re working with focus and intention, redirecting hours of manual effort into strategic initiatives that strengthen the bank’s overall resilience.

Prioritizing risk to power a resilient future

For this leading financial institution, Darktrace / Proactive Exposure Management has become the foundation for a more unified, data-driven, and resilient cybersecurity program. With clearer, business-relevant priorities, stronger oversight, and measurable efficiency gains, the bank has strengthened its resilience and met demanding regulatory expectations without adding operational strain.

Most importantly, it shifted the bank’s security posture from a reactive stance to a proactive, continuous program. Giving teams the confidence and intelligence to anticipate threats and safeguard the people and services that depend on them.

Continue reading
About the author
Kelland Goodin
Product Marketing Specialist

Blog

/

/

December 22, 2025

The Year Ahead: AI Cybersecurity Trends to Watch in 2026

2026 cyber threat trendsDefault blog imageDefault blog image

Introduction: 2026 cyber trends

Each year, we ask some of our experts to step back from the day-to-day pace of incidents, vulnerabilities, and headlines to reflect on the forces reshaping the threat landscape. The goal is simple:  to identify and share the trends we believe will matter most in the year ahead, based on the real-world challenges our customers are facing, the technology and issues our R&D teams are exploring, and our observations of how both attackers and defenders are adapting.  

In 2025, we saw generative AI and early agentic systems moving from limited pilots into more widespread adoption across enterprises. Generative AI tools became embedded in SaaS products and enterprise workflows we rely on every day, AI agents gained more access to data and systems, and we saw glimpses of how threat actors can manipulate commercial AI models for attacks. At the same time, expanding cloud and SaaS ecosystems and the increasing use of automation continued to stretch traditional security assumptions.

Looking ahead to 2026, we’re already seeing the security of AI models, agents, and the identities that power them becoming a key point of tension – and opportunity -- for both attackers and defenders. Long-standing challenges and risks such as identity, trust, data integrity, and human decision-making will not disappear, but AI and automation will increase the speed and scale of the cyber risk.  

Here's what a few of our experts believe are the trends that will shape this next phase of cybersecurity, and the realities organizations should prepare for.  

Agentic AI is the next big insider risk

In 2026, organizations may experience their first large-scale security incidents driven by agentic AI behaving in unintended ways—not necessarily due to malicious intent, but because of how easily agents can be influenced. AI agents are designed to be helpful, lack judgment, and operate without understanding context or consequence. This makes them highly efficient—and highly pliable. Unlike human insiders, agentic systems do not need to be socially engineered, coerced, or bribed. They only need to be prompted creatively, misinterpret legitimate prompts, or be vulnerable to indirect prompt injection. Without strong controls around access, scope, and behavior, agents may over-share data, misroute communications, or take actions that introduce real business risk. Securing AI adoption will increasingly depend on treating agents as first-class identities—monitored, constrained, and evaluated based on behavior, not intent.

-- Nicole Carignan, SVP of Security & AI Strategy

Prompt Injection moves from theory to front-page breach

We’ll see the first major story of an indirect prompt injection attack against companies adopting AI either through an accessible chatbot or an agentic system ingesting a hidden prompt. In practice, this may result in unauthorized data exposure or unintended malicious behavior by AI systems, such as over-sharing information, misrouting communications, or acting outside their intended scope. Recent attention on this risk—particularly in the context of AI-powered browsers and additional safety layers being introduced to guide agent behavior—highlights a growing industry awareness of the challenge.  

-- Collin Chapleau, Senior Director of Security & AI Strategy

Humans are even more outpaced, but not broken

When it comes to cyber, people aren’t failing; the system is moving faster than they can. Attackers exploit the gap between human judgment and machine-speed operations. The rise of deepfakes and emotion-driven scams that we’ve seen in the last few years reduce our ability to spot the familiar human cues we’ve been taught to look out for. Fraud now spans social platforms, encrypted chat, and instant payments in minutes. Expecting humans to be the last line of defense is unrealistic.

Defense must assume human fallibility and design accordingly. Automated provenance checks, cryptographic signatures, and dual-channel verification should precede human judgment. Training still matters, but it cannot close the gap alone. In the year ahead, we need to see more of a focus on partnership: systems that absorb risk so humans make decisions in context, not under pressure.

-- Margaret Cunningham, VP of Security & AI Strategy

AI removes the attacker bottleneck—smaller organizations feel the impact

One factor that is currently preventing more companies from breaches is a bottleneck on the attacker side: there’s not enough human hacker capital. The number of human hands on a keyboard is a rate-determining factor in the threat landscape. Further advancements of AI and automation will continue to open that bottleneck. We are already seeing that. The ostrich approach of hoping that one’s own company is too obscure to be noticed by attackers will no longer work as attacker capacity increases.  

-- Max Heinemeyer, Global Field CISO

SaaS platforms become the preferred supply chain target

Attackers have learned a simple lesson: compromising SaaS platforms can have big payouts. As a result, we’ll see more targeting of commercial off-the-shelf SaaS providers, which are often highly trusted and deeply integrated into business environments. Some of these attacks may involve software with unfamiliar brand names, but their downstream impact will be significant. In 2026, expect more breaches where attackers leverage valid credentials, APIs, or misconfigurations to bypass traditional defenses entirely.

-- Nathaniel Jones, VP of Security & AI Strategy

Increased commercialization of generative AI and AI assistants in cyber attacks

One trend we’re watching closely for 2026 is the commercialization of AI-assisted cybercrime. For example, cybercrime prompt playbooks sold on the dark web—essentially copy-and-paste frameworks that show attackers how to misuse or jailbreak AI models. It’s an evolution of what we saw in 2025, where AI lowered the barrier to entry. In 2026, those techniques become productized, scalable, and much easier to reuse.  

-- Toby Lewis, Global Head of Threat Analysis

Conclusion

Taken together, these trends underscore that the core challenges of cybersecurity are not changing dramatically -- identity, trust, data, and human decision-making still sit at the core of most incidents. What is changing quickly is the environment in which these challenges play out. AI and automation are accelerating everything: how quickly attackers can scale, how widely risk is distributed, and how easily unintended behavior can create real impact. And as technology like cloud services and SaaS platforms become even more deeply integrated into businesses, the potential attack surface continues to expand.  

Predictions are not guarantees. But the patterns emerging today suggest that 2026 will be a year where securing AI becomes inseparable from securing the business itself. The organizations that prepare now—by understanding how AI is used, how it behaves, and how it can be misused—will be best positioned to adopt these technologies with confidence in the year ahead.

Learn more about how to secure AI adoption in the enterprise without compromise by registering to join our live launch webinar on February 3, 2026.  

Continue reading
About the author
The Darktrace Community
Your data. Our AI.
Elevate your network security with Darktrace AI