Blog
/
/
May 12, 2021

How AI Protects Critical Infrastructure From Ransomware

Explore the role of AI in safeguarding critical infrastructure from ransomware, as revealed by Darktrace's latest insights.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
David Masson
VP, Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
12
May 2021

Modern Threats to OT Environments

At the 2021 RSA cyber security conference, US Secretary of Homeland Security Alejandro Mayorkas made an era-defining statement regarding the cyber security landscape: “Let me be clear: ransomware now poses a national security threat.”

Last weekend, Mayorkas’ words rang true. A ransomware attack on the Colonial Pipeline – responsible for nearly half of the US East Coast’s diesel, gasoline, and jet fuel – resulted in the shutdown of a critical fuel network supplying a number of Eastern states.

The fallout from the attack demonstrated how widespread and damaging the consequences of ransomware can be. Against critical infrastructure and utilities, cyber-attacks have the potential to disrupt supplies, harm the environment, and even threaten human lives.

Though full details remain to be confirmed, the attack is reported to have been conducted by an affiliate of the cyber-criminal group called DarkSide, and likely leveraged common remote desktop tools. Remote access has been enabled as an exploitable vulnerability within critical infrastructure by the shift to remote work that many organizations made last year, including those with Industrial Control Systems (ICS) and Operational Technology (OT).

The rise of industrial ransomware

Ransomware against industrial environments is on the rise, with a reported 500% increase since 2018. Oftentimes, these threats leverage the convergence of IT and OT systems, first targeting IT before pivoting to OT. This was seen with the EKANS ransomware that included ICS processes in its ‘kill list’, as well as the Cring ransomware that compromised ICS after first exploiting a vulnerability in a virtual private network (VPN).

It remains to be seen whether the initial attack vector in the Colonial Pipeline compromise exploited a technical vulnerability, compromised credentials, or a targeted spear phishing campaign. It has been reported that the attack first impacted IT systems, and that Colonial then shut down OT operations as a safety precaution. Colonial confirms that the ransomware “temporarily halted all pipeline operations and affected some of our IT systems,” showing that, ultimately, both OT and IT were affected. This is a great example of how many OT systems depend on IT, such that an IT cyber-attack has the ability to take down OT and ICS processes.

In addition to locking down systems, the threat actors also stole 100GB of sensitive data from Colonial. This kind of double extortion attack — in which data is exfiltrated before files are encrypted — has unfortunately become the norm rather than the exception, with over 70% of ransomware attacks involving exfiltration. Some ransomware gangs have even announced that they are dropping encryption altogether in favor of data theft and extortion methods.

Earlier this year, Darktrace defended against a double extortion ransomware attack waged against a critical infrastructure organization, which also leveraged common remote access tools. This blog will outline the threat find in depth, showing how Darktrace’s self-learning AI responded autonomously to an attack strikingly similar to the Colonial Pipeline incident.

Darktrace threat find

Ransomware against electric utilities equipment supplier

In an attack against a North American equipment supplier for electrical utilities earlier this year, Darktrace/OT demonstrated its ability to protect critical infrastructure against double extortion ransomware that targeted organizations with ICS and OT.

The ransomware attack initially targeted IT systems, and, thanks to self-learning Cyber AI, was stopped before it could spill over into OT and disrupt operations.

The attacker first compromised an internal server in order to exfiltrate data and deploy ransomware over the course of 12 hours. The short amount of time between initial compromise and deployment is unusual, as ransomware threat actors often wait several days to spread stealthily as far across the cyber ecosystem as possible before striking.

Figure 1: A timeline of the attack

How did the attack bypass the rest of the security stack?

The attacker leveraged ‘Living off the Land’ techniques to blend into the business’ normal ‘patterns of life’, using a compromised admin credential and a remote management tool approved by the organization, in its attempts to remain undetected.

Darktrace commonly sees the abuse of legitimate remote management software in attackers’ arsenal of techniques, tactics, and procedures (TTPs). Remote access is also becoming an increasingly common vector of attack in ICS attacks in particular. For example, in the cyber-incident at the Florida water treatment facility last February, attackers exploited a remote management tool in attempts to manipulate the treatment process.

The specific strain of ransomware deployed by this attacker also successfully evaded detection by anti-virus by using a unique file extension when encrypting files. These forms of ‘signatureless’ ransomware easily slip past legacy approaches to security that rely on rules, signatures, threat feeds, and lists of documented Common Vulnerabilities and Exposures (CVEs), as these are methods that can only detect previously documented threats.

The only way to detect never-before-seen threats like signatureless ransomware is for a technology to find anomalous behavior, rather than rely on lists of ‘known bads’. This can be achieved with self-learning technology, which spots even the most subtle deviations from the normal ‘patterns of life’ for all devices, users, and all the connections between them.

Darktrace insights

Initial compromise and establishing foothold

Despite the abuse of a legitimate tool and the absence of known signatures, Darktrace/OT was able to use a holistic understanding of normal activity to detect the malicious activity at multiple points in the attack lifecycle.

The first clear sign of an emerging threat that was alerted by Darktrace was the unusual use of a privileged credential. The device also served an unusual remote desktop protocol (RDP) connection from a Veeam server shortly before the incident, indicating that the attacker may have moved laterally from elsewhere in the network.

Three minutes later, the device initiated a remote management session which lasted 21 hours. This allowed the attacker to move throughout the broader cyber ecosystem while remaining undetected by traditional defences. Darktrace, however, was able to detect unusual remote management usage as another early warning indicative of an attack.

Double threat part one: Data exfiltration

One hour after the initial compromise, Darktrace detected unusual volumes of data being sent to a 100% rare cloud storage solution, pCloud. The outbound data was encrypted using SSL, but Darktrace created multiple alerts relating to large internal downloads and external uploads that were a significant deviation from the device’s normal ‘pattern of life’.

The device continued to exfiltrate data for nine hours. Analysis of the files downloaded by the device, which were transferred using the unencrypted SMB protocol, suggests that they were sensitive in nature. Fortunately, Darktrace was able to pinpoint the specific files that were exfiltrated so that the customer could immediately evaluate the potential implications of the compromise.

Double threat part two: File encryption

A short time later, at 01:49 local time, the compromised device began encrypting files in a SharePoint back-up share drive. Over the next three and a half hours, the device encrypted over 13,000 files on at least 20 SMB shares. In total, Darktrace produced 23 alerts for the device in question, which amounted to 48% of all the alerts produced in the corresponding 24-hour period.

Darktrace’s Cyber AI Analyst then automatically launched an investigation, identifying the internal data transfers and the file encryption over SMB. From this, it was able to present incident reports that connected the dots among these disparate anomalies, piecing them together into a coherent security narrative. This put the security team in a position to immediately take remediating action.

If the customer had been using Darktrace’s autonomous response technology, there is no doubt the activity would have been halted before significant volumes of data could have been exfiltrated or files encrypted. Fortunately, after seeing both the alerts and Cyber AI Analyst reports, the customer was able to use Darktrace’s ‘Ask the Expert’ (ATE) service for incident response to mitigate the impact of the attack and assist with disaster recovery.

Figure 2: AI Analyst Incident reporting an unusual reprogram command using the MODBUS protocol. The incident includes a plain English summary, relevant technical information, and the investigation process used by the AI.  

Detecting the threat before it could disrupt critical infrastructure

The targeted supplier was overseeing OT and had close ties to critical infrastructure. By facilitating the early-stage response, Darktrace prevented the ransomware from spreading further onto the factory floor. Crucially, Darktrace also minimized operational disruption, helping to avoid the domino effect which the attack could have had, affecting not only the supplier itself, but also the electric utilities that this supplier supports.

As both the recent Colonial Pipeline incident and the above threat find reveal, ransomware is a pressing concern for organizations overseeing industrial operations across all forms of critical infrastructure, from pipelines to the power grid and its suppliers. With self-learning AI, these attack vectors can be dealt with before the damage is done through real-time threat detection, autonomous investigations, and — if activated — targeted machine-speed response.

Looking forward: Using Self-Learning AI to protect critical infrastructure across the board

In late April, the Biden administration announced an ambitious effort to “safeguard US critical infrastructure from persistent and sophisticated threats.” The Department of Energy’s (DOE) 100-day plan specifically seeks technologies “that will provide cyber visibility, detection, and response capabilities for industrial control systems of electric utilities.”

The Biden administration’s cyber sprint clearly calls for a technology that protects critical energy infrastructure, rather than merely best practice measures and regulations. As seen in the above threat find, Darktrace AI is a powerful technology that leverages unsupervised machine learning to autonomously safeguard critical infrastructure and its suppliers with machine speed and precision.

Darktrace enhances detection, mitigation, and forensic capabilities to detect  sophisticated and novel attacks, along with insider threats and pre-existing infections, using Self-Learning Cyber AI, without rules, signatures, or lists of CVEs. Incident investigations provided in real time by Cyber AI Analyst jumpstart remediation with actionable insights, containing emerging attacks at their early stages, before they escalate into crisis.

Enable near real-time situational awareness and response capabilities

Darktrace immediately understands, identifies, and investigates all anomalous activity in ICS/OT networks, whether human or machine driven. Additionally, Darktrace actions targeted response where appropriate to neutralize threats, either actively or in human confirmation mode. Because Self-learning AI adapts alongside evolutions in the ecosystem, organizations benefit from real-time awareness with no tuning or human input necessary

Deploy technologies to increase visibility of threats in ICS and OT systems

Darktrace contextualizes security events, adapts to novel techniques, and translates findings into a security narrative that can be actioned by humans in minutes. Delivering a unified view across IT and OT systems.

Darktrace detects, investigates, and responds to threats at higher Purdue levels and in IT systems before they ‘spill over’ into OT. ‘Plug and play’ deployment seamlessly integrates with technological architecture, presenting 3D network topology with granular visibility into all users, devices, and subnets.

Darktrace's asset identification continuously catalogues all ICS/OT devices and identifies and investigates all threatening activity indicative of emerging attacks – be it ICS ransomware, APTs, zero-day exploits, insider threats, pre-existing infections, DDoS, crypto-mining, misconfigurations, or never-before-seen attacks.

Thanks to Darktrace analyst Oakley Cox for his insights on the above threat find.

Darktrace model detections:

  • Initial compromise:
  • User / New Admin Credential on Client
  • Data exfiltration:
  • Anomalous Connection / Uncommon 1 GiB Outbound
  • Anomalous Connection / Low and Slow Exfiltration
  • Device / Anomalous SMB Followed by Multiple Model Breaches
  • Anomalous Connection / Download and Upload
  • File encryption:
  • Compromise / Ransomware / Suspicious SMB Activity
  • Anomalous Connection / SMB Enumeration
  • Device / Anomalous RDP Followed by Multiple Model Breaches
  • Anomalous File / Internal / Additional Extension Appended to SMB File
  • Anomalous Connection / Sustained MIME Type Conversion
  • Anomalous Connection / Suspicious Read Write Ratio
  • Device / Multiple Lateral Movement Model Breaches

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
David Masson
VP, Field CISO

More in this series

No items found.

Blog

/

/

January 14, 2026

React2Shell Reflections: Cloud Insights, Finance Sector Impacts, and How Threat Actors Moved So Quickly

React2Shell Default blog imageDefault blog image

Introduction

Last month’s disclosure of CVE 2025-55812, known as React2Shell, provided a reminder of how quickly modern threat actors can operationalize newly disclosed vulnerabilities, particularly in cloud-hosted environments.

The vulnerability was discovered on December 3, 2025, with a patch made available on the same day. Within 30 hours of the patch, a publicly available proof-of-concept emerged that could be used to exploit any vulnerable server. This short timeline meant many systems remained unpatched when attackers began actively exploiting the vulnerability.  

Darktrace researchers rapidly deployed a new honeypot to monitor exploitation of CVE 2025-55812 in the wild.

Within two minutes of deployment, Darktrace observed opportunistic attackers exploiting this unauthenticated remote code execution flaw in React Server Components, leveraging a single crafted request to gain control of exposed Next.js servers. Exploitation quickly progressed from reconnaissance to scripted payload delivery, HTTP beaconing, and cryptomining, underscoring how automation and pre‑positioned infrastructure by threat actors now compress the window between disclosure and active exploitation to mere hours.

For cloud‑native organizations, particularly those in the financial sector, where Darktrace observed the greatest impact, React2Shell highlights the growing disconnect between patch availability and attacker timelines, increasing the likelihood that even short delays in remediation can result in real‑world compromise.

Cloud insights

In contrast to traditional enterprise networks built around layered controls, cloud architectures are often intentionally internet-accessible by default. When vulnerabilities emerge in common application frameworks such as React and Next.js, attackers face minimal friction.  No phishing campaign, no credential theft, and no lateral movement are required; only an exposed service and exploitable condition.

The activity Darktrace observed during the React2shell intrusions reflects techniques that are familiar yet highly effective in cloud-based attacks. Attackers quickly pivot from an exposed internet-facing application to abusing the underlying cloud infrastructure, using automated exploitation to deploy secondary payloads at scale and ultimately act on their objectives, whether monetizing access through cryptomining or to burying themselves deeper in the environment for sustained persistence.

Cloud Case Study

In one incident, opportunistic attackers rapidly exploited an internet-facing Azure virtual machine (VM) running a Next.js application, abusing the React/next.js vulnerability to gain remote command execution within hours of the service becoming exposed. The compromise resulted in the staged deployment of a Go-based remote access trojan (RAT), followed by a series of cryptomining payloads such as XMrig.

Initial Access

Initial access appears to have originated from abused virtual private network (VPN) infrastructure, with the source IP (146.70.192[.]180) later identified as being associated with Surfshark

The IP address above is associated with VPN abuse leveraged for initial exploitation via Surfshark infrastructure.
Figure 1: The IP address above is associated with VPN abuse leveraged for initial exploitation via Surfshark infrastructure.

The use of commercial VPN exit nodes reflects a wider trend of opportunistic attackers leveraging low‑cost infrastructure to gain rapid, anonymous access.

Parent process telemetry later confirmed execution originated from the Next.js server, strongly indicating application-layer compromise rather than SSH brute force, misused credentials, or management-plane abuse.

Payload execution

Shortly after successful exploitation, Darktrace identified a suspicious file and subsequent execution. One of the first payloads retrieved was a binary masquerading as “vim”, a naming convention commonly used to evade casual inspection in Linux environments. This directly ties the payload execution to the compromised Next.js application process, reinforcing the hypothesis of exploit-driven access.

Command-and-Control (C2)

Network flow logs revealed outbound connections back to the same external IP involved in the inbound activity. From a defensive perspective, this pattern is significant as web servers typically receive inbound requests, and any persistent outbound callbacks — especially to the same IP — indicate likely post-exploitation control. In this case, a C2 detection model alert was raised approximately 90 minutes after the first indicators, reflecting the time required for sufficient behavioral evidence to confirm beaconing rather than benign application traffic.

Cryptominers deployment and re-exploitation

Following successful command execution within the compromised Next.js workload, the attackers rapidly transitioned to monetization by deploying cryptomining payloads. Microsoft Defender observed a shell command designed to fetch and execute a binary named “x” via either curl or wget, ensuring successful delivery regardless of which tooling was availability on the Azure VM.

The binary was written to /home/wasiluser/dashboard/x and subsequently executed, with open-source intelligence (OSINT) enrichment strongly suggesting it was a cryptominer consistent with XMRig‑style tooling. Later the same day, additional activity revealed the host downloading a static XMRig binary directly from GitHub and placing it in a hidden cache directory (/home/wasiluser/.cache/.sys/).

The use of trusted infrastructure and legitimate open‑source tooling indicates an opportunistic approach focused on reliability and speed. The repeated deployment of cryptominers strongly suggests re‑exploitation of the same vulnerable web application rather than reliance on traditional persistence mechanisms. This behavior is characteristic of cloud‑focused attacks, where publicly exposed workloads can be repeatedly compromised at scale more easily.

Financial sector spotlight

During the mass exploitation of React2Shell, Darktrace observed targeting by likely North Korean affiliated actors focused on financial organizations in the United Kingdom, Sweden, Spain, Portugal, Nigeria, Kenya, Qatar, and Chile.

The targeting of the financial sector is not unexpected, but the emergence of new Democratic People’s Republic of Korea (DPRK) tooling, including a Beavertail variant and EtherRat, a previously undocumented Linux implant, highlights the need for updated rules and signatures for organizations that rely on them.

EtherRAT uses Ethereum smart contracts for C2 resolution, polling every 500 milliseconds and employing five persistence mechanisms. It downloads its own Node.js runtime from nodejs[.]org and queries nine Ethereum RPC endpoints in parallel, selecting the majority response to determine its C2 URL. EtherRAT also overlaps with the Contagious Interview campaign, which has targeted blockchain developers since early 2025.

Read more finance‑sector insights in Darktrace’s white paper, The State of Cyber Security in the Finance Sector.

Threat actor behavior and speed

Darktrace’s honeypot was exploited just two minutes after coming online, demonstrating how automated scanning, pre-positioned infrastructure and staging, and C2 infrastructure traced back to “bulletproof” hosting reflects a mature, well‑resourced operational chain.

For financial organizations, particularly those operating cloud‑native platforms, digital asset services, or internet‑facing APIs, this activity demonstrates how rapidly geopolitical threat actors can weaponize newly disclosed vulnerabilities, turning short patching delays into strategic opportunities for long‑term access and financial gain. This underscores the need for a behavioral-anomaly-led security posture.

Credit to Nathaniel Jones (VP, Security & AI Strategy, Field CISO)

Edited by Ryan Traill (Analyst Content Lead)

Appendices

Indicators of Compromise (IoCs)

146.70.192[.]180 – IP Address – Endpoint Associated with Surfshark

References

https://www.darktrace.com/resources/the-state-of-cybersecurity-in-the-finance-sector

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO

Blog

/

/

January 13, 2026

Runtime Is Where Cloud Security Really Counts: The Importance of Detection, Forensics and Real-Time Architecture Awareness

runtime, cloud security, cnaapDefault blog imageDefault blog image

Introduction: Shifting focus from prevention to runtime

Cloud security has spent the last decade focused on prevention; tightening configurations, scanning for vulnerabilities, and enforcing best practices through Cloud Native Application Protection Platforms (CNAPP). These capabilities remain essential, but they are not where cloud attacks happen.

Attacks happen at runtime: the dynamic, ephemeral, constantly changing execution layer where applications run, permissions are granted, identities act, and workloads communicate. This is also the layer where defenders traditionally have the least visibility and the least time to respond.

Today’s threat landscape demands a fundamental shift. Reducing cloud risk now requires moving beyond static posture and CNAPP only approaches and embracing realtime behavioral detection across workloads and identities, paired with the ability to automatically preserve forensic evidence. Defenders need a continuous, real-time understanding of what “normal” looks like in their cloud environments, and AI capable of processing massive data streams to surface deviations that signal emerging attacker behavior.

Runtime: The layer where attacks happen

Runtime is the cloud in motion — containers starting and stopping, serverless functions being called, IAM roles being assumed, workloads auto scaling, and data flowing across hundreds of services. It’s also where attackers:

  • Weaponize stolen credentials
  • Escalate privileges
  • Pivot programmatically
  • Deploy malicious compute
  • Manipulate or exfiltrate data

The challenge is complex: runtime evidence is ephemeral. Containers vanish; critical process data disappears in seconds. By the time a human analyst begins investigating, the detail required to understand and respond to the alert, often is already gone. This volatility makes runtime the hardest layer to monitor, and the most important one to secure.

What Darktrace / CLOUD Brings to Runtime Defence

Darktrace / CLOUD is purpose-built for the cloud execution layer. It unifies the capabilities required to detect, contain, and understand attacks as they unfold, not hours or days later. Four elements define its value:

1. Behavioral, real-time detection

The platform learns normal activity across cloud services, identities, workloads, and data flows, then surfaces anomalies that signify real attacker behavior, even when no signature exists.

2. Automated forensic level artifact collection

The moment Darktrace detects a threat, it can automatically capture volatile forensic evidence; disk state, memory, logs, and process context, including from ephemeral resources. This preserves the truth of what happened before workloads terminate and evidence disappears.

3. AI-led investigation

Cyber AI Analyst assembles cloud behaviors into a coherent incident story, correlating identity activity, network flows, and Cloud workload behavior. Analysts no longer need to pivot across dashboards or reconstruct timelines manually.

4. Live architectural awareness

Darktrace continuously maps your cloud environment as it operates; including services, identities, connectivity, and data pathways. This real-time visibility makes anomalies clearer and investigations dramatically faster.

Together, these capabilities form a runtime-first security model.

Why CNAPP alone isn’t enough

CNAPP platforms excel at pre deployment checks all the way down to developer workstations, identifying misconfigurations, concerning permission combinations, vulnerable images, and risky infrastructure choices. But CNAPP’s breadth is also its limitation. CNAPP is about posture. Runtime defense is about behavior.

CNAPP tells you what could go wrong; runtime detection highlights what is going wrong right now.

It cannot preserve ephemeral evidence, correlate active behaviors across domains, or contain unfolding attacks with the precision and speed required during a real incident. Prevention remains essential, but prevention alone cannot stop an attacker who is already operating inside your cloud environment.

Real-world AWS Scenario: Why Runtime Monitoring Wins

A recent incident detected by Darktrace / CLOUD highlights how cloud compromises unfold, and why runtime visibility is non-negotiable. Each step below reflects detections that occur only when monitoring behavior in real time.

1. External Credential Use

Detection: Unusual external source for credential use: An attacker logs into a cloud account from a never-before-seen location, the earliest sign of account takeover.

2. AWS CLI Pivot

Detection: Unusual CLI activity: The attacker switches to programmatic access, issuing commands from a suspicious host to gain automation and stealth.

3. Credential Manipulation

Detection: Rare password reset: They reset or assign new passwords to establish persistence and bypass existing security controls.

4. Cloud Reconnaissance

Detection: Burst of resource discovery: The attacker enumerates buckets, roles, and services to map high value assets and plan next steps.

5. Privilege Escalation

Detection: Anomalous IAM update: Unauthorized policy updates or role changes grant the attacker elevated access or a backdoor.

6. Malicious Compute Deployment

Detection: Unusual EC2/Lambda/ECS creation: The attacker deploys compute resources for mining, lateral movement, or staging further tools.

7. Data Access or Tampering

Detection: Unusual S3 modifications: They alter S3 permissions or objects, often a prelude to data exfiltration or corruption.

Only some of these actions would appear in a posture scan, crucially after the fact.
Every one of these runtime detections is visible only through real-time behavioral monitoring while the attack is in progress.

The future of cloud security Is runtime-first

Cloud defense can no longer revolve solely around prevention. Modern attacks unfold in runtime, across a fast-changing mesh of workloads, services, and — critically — identities. To reduce risk, organizations must be able to detect, understand, and contain malicious activity as it happens, before ephemeral evidence disappears and before attacker's pivot across identity layers.

Darktrace / CLOUD delivers this shift by turning runtime, the most volatile and consequential layer in the cloud, into a fully defensible control point through unified visibility across behavior, workloads, and identities. It does this by providing:

  • Real-time behavior detection across workloads and identity activity
  • Autonomous response actions for rapid containment
  • Automated forensic level artifact preservation the moment events occur
  • AI-driven investigation that separates weak signals from true attacker patterns
  • Live cloud environment insight to understand context and impact instantly

Cloud security must evolve from securing what might go wrong to continuously understanding what is happening; in runtime, across identities, and at the speed attackers operate. Unifying runtime and identity visibility is how defenders regain the advantage.

[related-resource]

Continue reading
About the author
Adam Stevens
Senior Director of Product, Cloud | Darktrace
Your data. Our AI.
Elevate your network security with Darktrace AI