Blog
/
Email
/
December 31, 2024

Defending AITM Phishing and Mamba Attacks

Analyze the challenges posed by AITM phishing threats and Mamba 2FA, and discover how to safeguard your systems effectively.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Patrick Anjos
Senior Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
31
Dec 2024

What are Adversary-in-the-Middle (AiTM) phishing kits?

Phishing-as-a-Service (PhaaS) platforms have significantly lowered the barriers to entry for cybercriminals, enabling a new wave of sophisticated phishing attacks. Among the most concerning developments in this landscape is the emergence of Adversary-in-the-Middle (AiTM) phishing kits, which enhance traditional phishing tactics by allowing attackers to intercept and manipulate communications in real-time. The PhaaS marketplace offers a wide variety of innovative capabilities, with basic services starting around USD 120 and more advanced services costing around USD 250 monthly [1].

These AiTM kits are designed to create convincing decoy pages that mimic legitimate login interfaces, often pre-filling user information to increase credibility. By acting as a man-in-the-middle, attackers can harvest sensitive data such as usernames, passwords, and even multi-factor authentication (MFA) tokens without raising immediate suspicion. This capability not only makes AiTM attacks more effective but also poses a significant challenge for cybersecurity defenses [2].

Mamba 2FA is one such example of a PhaaS strain with AiTM capabilities that has emerged as a significant threat to users of Microsoft 365 and other enterprise systems. Discovered in May 2024, Mamba 2FA employs advanced AiTM tactics to bypass MFA, making it particularly dangerous for organizations relying on these security measures.

What is Mamba 2FA?

Phishing Mechanism

Mamba 2FA employs highly convincing phishing pages that closely mimic legitimate Microsoft services like OneDrive and SharePoint. These phishing URLs are crafted with a specific structure, incorporating Base64-encoded parameters. This technique allows attackers to tailor the phishing experience to the targeted organization, making the deception more effective. If an invalid parameter is detected, users are redirected to a benign error page, which helps evade automated detection systems [5].

Figure 1: Phishing page mimicking the Microsoft OneDrive service.

Real-Time Communication

A standout feature of Mamba 2FA is its use of the Socket.IO JavaScript library. This library facilitates real-time communication between the phishing page and the attackers' backend servers. As users input sensitive information, such as usernames, passwords, and MFA tokens on the phishing site, this data is immediately relayed to the attackers, enabling swift unauthorized access [5].

Multi-Factor Authentication Bypass

Mamba 2FA specifically targets MFA methods that are not resistant to phishing, such as one-time passwords (OTPs) and push notifications. When a user enters their MFA token, it is captured in real-time by the attackers, who can then use it to access the victim's account immediately. This capability significantly undermines traditional security measures that rely on MFA for account protection.

Infrastructure and Distribution

The platform's infrastructure consists of two main components: link domains and relay servers. Link domains handle initial phishing attempts, while relay servers are responsible for stealing credentials and completing login processes on behalf of the attacker. The relay servers are designed to mask their IP addresses by using proxy services, making it more difficult for security systems to block them [3].

Evasion Techniques

To evade detection by security tools, Mamba 2FA employs several strategies:

  • Sandbox Detection: The platform can detect if it is being analyzed in a sandbox environment and will redirect users to harmless pages like Google’s 404 error page.
  • Dynamic URL Generation: The URLs used in phishing attempts are frequently rotated and often short-lived to avoid being blacklisted by security solutions.
  • HTML Attachments: Phishing emails often include HTML attachments that appear benign but contain hidden JavaScript that redirects users to the phishing page [5].

Darktrace’s Coverage of Mamba 2FA

Starting in July 2024, the Darktrace Threat Research team detected a sudden rise in Microsoft 365 customer accounts logging in from unusual external sources. These accounts were accessed from an anomalous endpoint, 2607:5500:3000:fea[::]2, and exhibited unusual behaviors upon logging into Software-as-a-Service (SaaS) accounts. This activity strongly correlates with a phishing campaign using Mamba 2FA, first documented in late June 2024 and tracked as Mamba 2FA by Sekoia [2][3].

Darktrace / IDENTITY  was able to identify the initial stages of the Mamba 2FA campaign by correlating subtle anomalies, such as unusual SaaS login locations. Using AI based on peer group analysis, it detected unusual behavior associated with these attacks. By leveraging Autonomous Response actions, Darktrace was able to neutralize these threats in every instance of the campaign detected.

On July 23, a SaaS user was observed logging in from a rare ASN and IP address, 2607:5500:3000:fea::2, originating from the US and successfully passed through MFA authentication.

Figure 2: Model Alert Event Log showing Darktrace’s detection of a SaaS user mailbox logging in from an unusual source it correlates with Mamba 2FA relay server.

Almost an hour later, the SaaS user was observed logging in from another suspicious IP address, 45.133.172[.]86, linked to ASN AS174 COGENT-174. This IP, originating from the UK, successfully passed through MFA validation.

Following this unusual access, the SaaS user was notably observed reading emails and files that could contain sensitive payment and contract information. This behavior suggests that the attacker may have been leveraging contextual information about the target to craft further malicious phishing emails or fraudulent invoices. Subsequently, the user was detected creating a new mailbox rule titled 'fdsdf'. This rule was configured to redirect emails from a specific domain to the 'Deleted Items' folder and automatically mark them as read.

Implications of Unusual Email Rules

Such unusual email rule configurations are a common tactic employed by attackers. They often use these rules to automatically forward emails containing sensitive keywords—such as "invoice”, "payment", or "confidential"—to an external address. Additionally, these rules help conceal malicious activities, keeping them hidden from the target and allowing the attacker to operate undetected.

Figure 3: The model alert “SaaS / Compliance / Anomalous New Email Rule,” pertaining to the unusual email rule created by the SaaS user named ‘fdsdf’.

Blocking the action

A few minutes later, the SaaS user from the unusual IP address 45.133.172[.]86 was observed attempting to send an email with the subject “RE: Payments.” Subsequently, Darktrace detected the user engaging in activities that could potentially establish persistence in the compromised account, such as registering a new authenticator app. Recognizing this sequence of anomalous behaviors, Darktrace implemented an Autonomous Response inhibitor, disabling the SaaS user for two hours. This action effectively contained potential malicious activities, such as the distribution of phishing emails and fraudulent invoices, and gave the customer’s security team the necessary time to conduct a thorough investigation and implement appropriate security measures.

Figure 4: Device Event Log displaying Darktrace’s Autonomous Response taking action by blocking the SaaS account.
Figure 5: Darktrace / IDENTITY highlighting the 16 model alerts that triggered during the observed compromise.

In another example from mid-July, similar activities related to the campaign were observed on another customer network. A SaaS user was initially detected logging in from the unusual external endpoint 2607:5500:3000:fea[::]2.

Figure 6: The SaaS / Compromise / SaaS Anomaly Following Anomalous Login model alert was triggered by an unusual login from a suspicious IP address linked to Mamba 2FA.

A few minutes later, in the same manner as demonstrated in the previous case, the actor was observed logging in from another rare endpoint, 102.68.111[.]240. However, this time it was from a source IP located in Lagos, Nigeria, which no other user on the network had been observed connecting from. Once logged in, the SaaS user updated the settings to "User registered Authenticator App with Notification and Code," a possible attempt to maintain persistence in the SaaS account.

Figure 7: Darktrace / IDENTITY highlighted the regular locations for the SaaS user. The rarity scores associated with the Mamba 2FA IP location and another IP located in Nigeria were classified as having very low regularity scores for this user.

Based on unusual patterns of user behavior, a Cyber AI Analyst Incident was also generated, detailing all potential account hijacking activities. Darktrace also applied an Autonomous Response action, disabling the user for over five hours. This swift action was crucial in preventing further unauthorized access, potential data breaches and further implications.

Figure 8: Cyber AI Analyst Incident detailing the unusual activities related to the SaaS account hijacking.

Since the customer had subscribed to Darktrace Security Operations Centre (SOC) services, Darktrace analysts conducted an additional human investigation confirming the account compromise.

How Darktrace Combats Phishing Threats

The initial entry point for Mamba 2FA account compromises primarily involves phishing campaigns using HTML attachments and deceptive links. These phishing attempts are designed to mimic legitimate Microsoft services, such as OneDrive and SharePoint, making them appear authentic to unsuspecting users. Darktrace / EMAIL leverages multiple capabilities to analyze email content for known indicators of phishing. This includes looking for suspicious URLs, unusual attachments (like HTML files with embedded JavaScript), and signs of social engineering tactics commonly used in phishing campaigns like Mamba 2FA. With these capabilities, Darktrace successfully detected Mamba 2FA phishing emails in networks where this tool is integrated into the security layers, consequently preventing further implications and account hijacks of their users.

Mamba 2FA URL Structure and Domain Names

The URL structure used in Mamba 2FA phishing attempts is specifically designed to facilitate the capture of user credentials and MFA tokens while evading detection. These phishing URLs typically follow a pattern that incorporates Base64-encoded parameters, which play a crucial role in the operation of the phishing kit.

The URLs associated with Mamba 2FA phishing pages generally follow this structure [6]:

https://{domain}/{m,n,o}/?{Base64 string}

Below are some potential Mamba 2FA phishing emails, with the Base64 strings already decoded, that were classified as certain threats by Darktrace / EMAIL. This classification was based on identifying multiple suspicious characteristics, such as HTML attachments containing JavaScript code, emails from senders with no previous association with the recipients, analysis of redirect links, among others. These emails were autonomously blocked from being delivered to users' inboxes.

Figure 9: Darktrace / EMAIL highlighted a possible phishing email from Mamba 2FA, which was classified as a 100% anomaly.
Figure 10: Darktrace / EMAIL highlighted a URL that resembles the characteristics associated with Mamba 2FA.

Conclusion

The rise of PhaaS platforms and the advent of AiTM phishing kits represent a concerning evolution in cyber threats, pushing the boundaries of traditional phishing tactics and exposing significant vulnerabilities in current cybersecurity defenses. The ability of these attacks to effortlessly bypass traditional security measures like MFA underscores the need for more sophisticated, adaptive strategies to combat these evolving threats.

By identifying and responding to anomalous activities within Microsoft 365 accounts, Darktrace not only highlights the importance of comprehensive monitoring but also sets a new standard for proactive threat detection. Furthermore, the autonomous threat response capabilities and the exceptional proficiency of Darktrace / EMAIL in intercepting and neutralizing sophisticated phishing attacks illustrate a robust defense mechanism that can effectively safeguard users and maintain the integrity of digital ecosystems.

Credit to Patrick Anjos (Senior Cyber Analyst) and Nahisha Nobregas (Senior Cyber Analyst)

Get the latest insights on emerging cyber threats

Attackers are adapting, are you ready? This report explores the latest trends shaping the cybersecurity landscape and what defenders need to know in 2025.

  • Identity-based attacks: How attackers are bypassing traditional defenses
  • Zero-day exploitation: The rise of previously unknown vulnerabilities
  • AI-driven threats: How adversaries are leveraging AI to outmaneuver security controls

Stay ahead of evolving threats with expert analysis from Darktrace. Download the report here.

Appendices

Darktrace Model Detections

  • SaaS / Access / M365 High Risk Level Login
  • SaaS / Access / Unusual External Source for SaaS Credential Use
  • SaaS / Compromise / Login From Rare Endpoint While User Is Active
  • SaaS / Compliance / M365 Security Information Modified
  • SaaS / Compromise / Unusual Login and New Email Rule
  • SaaS / Email Nexus / Suspicious Internal Exchange Activity
  • SaaS / Compliance / Anomalous New Email Rule
  • SaaS / Email Nexus / Possible Outbound Email Spam
  • SaaS / Compromise / Unusual Login and Account Update
  • SaaS / Compromise / SaaS Anomaly Following Anomalous Login
  • SaaS / Compliance / M365 Security Information Modified
  • SaaS / Compromise / Login From Rare Endpoint While User Is Active
  • SaaS / Compromise / Unusual Login, Sent Mail, Deleted Sent
  • SaaS / Unusual Activity / Multiple Unusual SaaS Activities
  • SaaS / Email Nexus / Unusual Login Location Following Link to File Storage
  • SaaS / Unusual Activity / Multiple Unusual External Sources For SaaS Credential
  • IaaS / Compliance / Uncommon Azure External User Invite
  • SaaS / Compliance / M365 External User Added to Group
  • SaaS / Access / M365 High Risk Level Login
  • SaaS / Compliance / M365 Security Information Modified
  • SaaS/ Unusual Activity / Unusual MFA Auth and SaaS Activity
  • SaaS / Compromise / Unusual Login and Account Update

Cyber AI Analyst Incidents:

  • Possible Hijack of Office365 Account
  • Possible Hijack of AzureActiveDirectory Account
  • Possible Unsecured Office365 Resource

List of Indicators of Compromise (IoCs)

IoC       Type    Description + Confidence

2607:5500:3000:fea[::]2 - IPv6 - Possible Mamba 2FA relay server

2607:5500:3000:1cab:[:]2 - IPv6 - Possible Mamba 2FA relay server

References

1.     https://securityaffairs.com/136953/cyber-crime/caffeine-phishing-platform.html

2.     https://any.run/cybersecurity-blog/analysis-of-the-phishing-campaign/

3.     https://www.bleepingcomputer.com/news/security/new-mamba-2fa-bypass-service-targets-microsoft-365-accounts/

4.     https://cyberinsider.com/microsoft-365-accounts-targeted-by-new-mamba-2fa-aitm-phishing-threat/

5.     https://blog.sekoia.io/mamba-2fa-a-new-contender-in-the-aitm-phishing-ecosystem/

MITRE ATT&CK Mapping

Tactic – Technique

DEFENSE EVASION, PERSISTENCE, PRIVILEGE ESCALATION, INITIAL ACCESS - Cloud Accounts

DISCOVERY - Cloud Service Dashboard

RESOURCE DEVELOPMENT - Compromise Accounts

CREDENTIAL ACCESS - Steal Web Session Cookie

PERSISTENCE - Account Manipulation

PERSISTENCE - Outlook Rules

RESOURCE DEVELOPMENT - Email Accounts

INITIAL ACCESS - Phishing

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Patrick Anjos
Senior Cyber Analyst

More in this series

No items found.

Blog

/

/

November 19, 2025

Securing Generative AI: Managing Risk in Amazon Bedrock with Darktrace / CLOUD

securing generative aiDefault blog imageDefault blog image

Security risks and challenges of generative AI in the enterprise

Generative AI and managed foundation model platforms like Amazon Bedrock are transforming how organizations build and deploy intelligent applications. From chatbots to summarization tools, Bedrock enables rapid agent development by connecting foundation models to enterprise data and services. But with this flexibility comes a new set of security challenges, especially around visibility, access control, and unintended data exposure.

As organizations move quickly to operationalize generative AI, traditional security controls are struggling to keep up. Bedrock’s multi-layered architecture, spanning agents, models, guardrails, and underlying AWS services, creates new blind spots that standard posture management tools weren’t designed to handle. Visibility gaps make it difficult to know which datasets agents can access, or how model outputs might expose sensitive information. Meanwhile, developers often move faster than security teams can review IAM permissions or validate guardrails, leading to misconfigurations that expand risk. In shared-responsibility environments like AWS, this complexity can blur the lines of ownership, making it critical for security teams to have continuous, automated insight into how AI systems interact with enterprise data.

Darktrace / CLOUD provides comprehensive visibility and posture management for Bedrock environments, automatically detecting and proactively scanning agents and knowledge bases, helping teams secure their AI infrastructure without slowing down expansion and innovation.

A real-world scenario: When access goes too far

Consider a scenario where an organization deploys a Bedrock agent to help internal staff quickly answer business questions using company knowledge. The agent was connected to a knowledge base pointing at documents stored in Amazon S3 and given access to internal services via APIs.

To get the system running quickly, developers assigned the agent a broad execution role. This role granted access to multiple S3 buckets, including one containing sensitive customer records. The over-permissioning wasn’t malicious; it stemmed from the complexity of IAM policy creation and the difficulty of identifying which buckets held sensitive data.

The team assumed the agent would only use the intended documents. However, they did not fully consider how employees might interact with the agent or how it might act on the data it processed.  

When an employee asked a routine question about quarterly customer activity, the agent surfaced insights that included regulated data, revealing it to someone without the appropriate access.

This wasn’t a case of prompt injection or model manipulation. The agent simply followed instructions and used the resources it was allowed to access. The exposure was valid under IAM policy, but entirely unintended.

How Darktrace / CLOUD prevents these risks

Darktrace / CLOUD helps organizations avoid scenarios like unintended data exposure by providing layered visibility and intelligent analysis across Bedrock and SageMaker environments. Here’s how each capability works in practice:

Configuration-level visibility

Bedrock deployments often involve multiple components: agents, guardrails, and foundation models, each with its own configuration. Darktrace / CLOUD indexes these configurations so teams can:

  1. Inspect deployed agents and confirm they are connected only to approved data sources.
  2. Track evaluation job setups and their links to Amazon S3 datasets, uncovering hidden data flows that could expose sensitive information.
  3. Maintain full awareness of all AI components, reducing the chance of overlooked assets introducing risk.

By unifying configuration data across Bedrock, SageMaker, and other AWS services, Darktrace / CLOUD provides a single source of truth for AI asset visibility. Teams can instantly see how each component is configured and whether it aligns with corporate security policies. This eliminates guesswork, accelerates audits, and helps prevent misaligned settings from creating data exposure risks.

 Agents for bedrock relationship views.
Figure 1: Agents for bedrock relationship views

Architectural awareness

Complex AI environments can make it difficult to understand how components interact. Darktrace / CLOUD generates real-time architectural diagrams that:

  1. Visualize relationships between agents, models, and datasets.
  1. Highlight unintended data access paths or risk propagation across interconnected services.

This clarity helps security teams spot vulnerabilities before they lead to exposure. By surfacing these relationships dynamically, Darktrace / CLOUD enables proactive risk management, helping teams identify architectural drift, redundant data connections, or unmonitored agents before attackers or accidental misuse can exploit them. This reduces investigation time and strengthens compliance confidence across AI workloads.

Figure 2: Full Bedrock agent architecture including lambda and IAM permission mapping
Figure 2: Full Bedrock agent architecture including lambda and IAM permission mapping

Access & privilege analysis

IAM permissions apply to every AWS service, including Bedrock. When Bedrock agents assume IAM roles that were broadly defined for other workloads, they often inherit excessive privileges. Without strict least-privilege controls, the agent may have access to far more data and services than required, creating avoidable security exposure. Darktrace / CLOUD:

  1. Reviews execution roles and user permissions to identify excessive privileges.
  2. Flags anomalies that could enable privilege escalation or unauthorized API actions.

This ensures agents operate within the principle of least privilege, reducing attack surface. Beyond flagging risky roles, Darktrace / CLOUD continuously learns normal patterns of access to identify when permissions are abused or expanded in real time. Security teams gain context into why an action is anomalous and how it could affect connected assets, allowing them to take targeted remediation steps that preserve productivity while minimizing exposure.

Misconfiguration detection

Misconfigurations are a leading cause of cloud security incidents. Darktrace / CLOUD automatically detects:

  1. Publicly accessible S3 buckets that may contain sensitive training data.
  2. Missing guardrails in Bedrock deployments, which can allow inappropriate or sensitive outputs.
  3. Other issues such as lack of encryption, direct internet access, and root access to models.  

By surfacing these risks early, teams can remediate before they become exploitable. Darktrace / CLOUD turns what would otherwise be manual reviews into automated, continuous checks, reducing time to discovery and preventing small oversights from escalating into full-scale incidents. This automated assurance allows organizations to innovate confidently while keeping their AI systems compliant and secure by design.

Configuration data for Anthropic foundation model
Figure 3: Configuration data for Anthropic foundation model

Behavioral anomaly detection

Even with correct configurations, behavior can signal emerging threats. Using AWS CloudTrail, Darktrace / CLOUD:

  1. Monitors for unusual data access patterns, such as agents querying unexpected datasets.
  2. Detects anomalous training job invocations that could indicate attempts to pollute models.

This real-time behavioral insight helps organizations respond quickly to suspicious activity. Because it learns the “normal” behavior of each Bedrock component over time, Darktrace / CLOUD can detect subtle shifts that indicate emerging risks, before formal indicators of compromise appear. The result is faster detection, reduced investigation effort, and continuous assurance that AI-driven workloads behave as intended.

Conclusion

Generative AI introduces transformative capabilities but also complex risks that evolve alongside innovation. The flexibility of services like Amazon Bedrock enables new efficiencies and insights, yet even legitimate use can inadvertently expose sensitive data or bypass security controls. As organizations embrace AI at scale, the ability to monitor and secure these environments holistically, without slowing development, is becoming essential.

By combining deep configuration visibility, architectural insight, privilege and behavior analysis, and real-time threat detection, Darktrace gives security teams continuous assurance across AI tools like Bedrock and SageMaker. Organizations can innovate with confidence, knowing their AI systems are governed by adaptive, intelligent protection.

[related-resource]

Continue reading
About the author
Adam Stevens
Senior Director of Product, Cloud | Darktrace

Blog

/

Network

/

November 19, 2025

Unmasking Vo1d: Inside Darktrace’s Botnet Detection

Unmasking Vo1d: Inside Darktrace’s Botnet DetectionDefault blog imageDefault blog image

What is Vo1d APK malware?

Vo1d malware first appeared in the wild in September 2024 and has since evolved into one of the most widespread Android botnets ever observed. This large-scale Android malware primarily targets smart TVs and low-cost Android TV boxes. Initially, Vo1d was identified as a malicious backdoor capable of installing additional third-party software [1]. Its functionality soon expanded beyond the initial infection to include deploying further malicious payloads, running proxy services, and conducting ad fraud operations. By early 2025, it was estimated that Vo1d had infected 1.3 to 1.6 million devices worldwide [2].

From a technical perspective, Vo1d embeds components into system storage to enable itself to download and execute new modules at any time. External researchers further discovered that Vo1d uses Domain Generation Algorithms (DGAs) to create new command-and-control (C2) domains, ensuring that regardless of existing servers being taken down, the malware can quickly reconnect to new ones. Previous published analysis identified dozens of C2 domains and hundreds of DGA seeds, along with new downloader families. Over time, Vo1d has grown increasingly sophisticated with clear signs of stronger obfuscation and encryption methods designed to evade detection [2].

Darktrace’s coverage

Earlier this year, Darktrace observed a surge in Vo1d-related activity across customer environments, with the majority of affected customers based in South Africa. Devices that had been quietly operating as expected began exhibiting unusual network behavior, including excessive DNS lookups. Open-source intelligence (OSINT) has long highlighted South Africa as one of the countries most impacted by Vo1d infections [2].

What makes the recent activity particularly interesting is that the surge observed by Darktrace appears to be concentrated specifically in South African environments. This localized spike suggests that a significant number of devices may have been compromised, potentially due to vulnerable software, outdated firmware, or even preloaded malware. Regions with high prevalence of low-cost, often unpatched devices are especially susceptible, as these everyday consumer electronics can be quietly recruited into the botnet’s network. This specifically appears to be the case with South Africa, where public reporting has documented widespread use of low-cost boxes, such as non-Google-certified Android TV sticks, that frequently ship with outdated firmware [3].

The initial triage highlighted the core mechanism Vo1d uses to remain resilient: its use of DGA. A DGA deterministically creates a large list of pseudo-random domain names on a predictable schedule. This enables the malware to compute hundreds of candidate domains using the same algorithm, instead of using a hard-coded single C2 hostname that defenders could easily block or take down. To ensure reproducible from the infected device’s perspective, Vo1d utilizes DGA seeds. These seeds might be a static string, a numeric value, or a combination of underlying techniques that enable infected devices to generate the same list of candidate domains for a time window, provided the same DGA code, seed, and date are used.

Interestingly, Vo1d’s DGA seeds do not appear to be entirely unpredictable, and the generated domains lack fully random-looking endings. As observed in Figure 1, there is a clear pattern in the names generated. In this case, researchers identified that while the first five characters would change to create the desired list of domain names, the trailing portion remained consistent as part of the seed: 60b33d7929a, which OSINT sources have linked to the Vo1d botnet. [2]. Darktrace’s Threat Research team also identified a potential second DGA seed, with devices in some cases also engaging in activity involving hostnames matching the regular expression /[a-z]{5}fc975904fc9\.(com|top|net). This second seed has not been reported by any OSINT vendors at the time of writing.

Another recurring characteristic observed across multiple cases was the choice of top-level domains (TLDs), which included .com, .net, and .top.

Figure 1: Advanced Search results showing DNS lookups, providing a glimpse on the DGA seed utilized.

The activity was detected by multiple models in Darktrace / NETWORK™, which triggered on devices making an unusually large volume of DNS requests for domains uncommon across the network.

During the network investigation, Darktrace analysts traced Vo1d’s infrastructure and uncovered an interesting pattern related to responder ASNs. A significant number of connections pointed to AS16509 (AMAZON-02). By hosting redirectors or C2 nodes inside major cloud environments, Vo1d is able to gain access to highly available and geographically diverse infrastructure. When one node is taken down or reported, operators can quickly enable a new node under a different IP within the same ASN. Another feature of cloud infrastructure that hardens Vo1d’s resilience is the fact that many organizations allow outbound connections to cloud IP ranges by default, assuming they are legitimate. Despite this, Darktrace was able to identify the rarity of these endpoints, identifying the unusualness of the activity.

Analysts further observed that once a generated domain successfully resolved, infected devices consistently began establishing outbound connections to ephemeral port ranges like TCP ports 55520 and 55521. These destination ports are atypical for standard web or DNS traffic. Even though the choice of high-numbered ports appears random, it is likely far from not accidental. Commonly used ports such as port 80 (HTTP) or 443 (HTTPS) are often subject to more scrutiny and deeper inspection or content filtering, making them riskier for attackers. On the other hand, unregistered ports like 55520 and 55521 are less likely to be blocked, providing a more covert channel that blends with outbound TCP traffic. This tactic helps evade firewall rules that focus on common service ports. Regardless, Darktrace was able to identify external connections on uncommon ports to locations that the network does not normally visit.

The continuation of the described activity was identified by Darktrace’s Cyber AI Analyst, which correlated individual events into a broader interconnected incident. It began with the multiple DNS requests for the algorithmically generated domains, followed by repeated connections to rare endpoints later confirmed as attacker-controlled infrastructure. Cyber AI Analyst’s investigation further enabled it to categorize the events as part of the “established foothold” phase of the attack.

Figure 2: Cyber AI Analyst incident illustrating the transition from DNS requests for DGA domains to connections with resolved attacker-controlled infrastructure.

Conclusion

The observations highlighted in this blog highlight the precision and scale of Vo1d’s operations, ranging from its DGA-generated domains to its covert use of high-numbered ports. The surge in affected South African environments illustrate how regions with many low-cost, often unpatched devices can become major hubs for botnet activity. This serves as a reminder that even everyday consumer electronics can play a role in cybercrime, emphasizing the need for vigilance and proactive security measures.

Credit to Christina Kreza (Cyber Analyst & Team Lead) and Eugene Chua (Principal Cyber Analyst & Team Lead)

Edited by Ryan Traill (Analyst Content Lead)

Appendices

Darktrace Model Detections

  • Anomalous Connection / Devices Beaconing to New Rare IP
  • Anomalous Connection / Multiple Connections to New External TCP Port
  • Anomalous Connection / Multiple Failed Connections to Rare Endpoint
  • Compromise / DGA Beacon
  • Compromise / Domain Fluxing
  • Compromise / Fast Beaconing to DGA
  • Unusual Activity / Unusual External Activity

List of Indicators of Compromise (IoCs)

  • 3.132.75[.]97 – IP address – Likely Vo1d C2 infrastructure
  • g[.]sxim[.]me – Hostname – Likely Vo1d C2 infrastructure
  • snakeers[.]com – Hostname – Likely Vo1d C2 infrastructure

Selected DGA IoCs

  • semhz60b33d7929a[.]com – Hostname – Possible Vo1d C2 DGA endpoint
  • ggqrb60b33d7929a[.]com – Hostname – Possible Vo1d C2 DGA endpoint
  • eusji60b33d7929a[.]com – Hostname – Possible Vo1d C2 DGA endpoint
  • uacfc60b33d7929a[.]com – Hostname – Possible Vo1d C2 DGA endpoint
  • qilqxfc975904fc9[.]top – Hostname – Possible Vo1d C2 DGA endpoint

MITRE ATT&CK Mapping

  • T1071.004 – Command and Control – DNS
  • T1568.002 – Command and Control – Domain Generation Algorithms
  • T1568.001 – Command and Control – Fast Flux DNS
  • T1571 – Command and Control – Non-Standard Port

[1] https://news.drweb.com/show/?lng=en&i=14900

[2] https://blog.xlab.qianxin.com/long-live-the-vo1d_botnet/

[3] https://mybroadband.co.za/news/broadcasting/596007-warning-for-south-africans-using-specific-types-of-tv-sticks.html

The content provided in this blog is published by Darktrace for general informational purposes only and reflects our understanding of cybersecurity topics, trends, incidents, and developments at the time of publication. While we strive to ensure accuracy and relevance, the information is provided “as is” without any representations or warranties, express or implied. Darktrace makes no guarantees regarding the completeness, accuracy, reliability, or timeliness of any information presented and expressly disclaims all warranties.

Nothing in this blog constitutes legal, technical, or professional advice, and readers should consult qualified professionals before acting on any information contained herein. Any references to third-party organizations, technologies, threat actors, or incidents are for informational purposes only and do not imply affiliation, endorsement, or recommendation.

Darktrace, its affiliates, employees, or agents shall not be held liable for any loss, damage, or harm arising from the use of or reliance on the information in this blog.

The cybersecurity landscape evolves rapidly, and blog content may become outdated or superseded. We reserve the right to update, modify, or remove any content.

Continue reading
About the author
Christina Kreza
Cyber Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI